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Preface

The second WRAC, NASA/IEEE Workshop on Radical Agent Concepts, was held at 
NASA Goddard Space Flight Center, Greenbelt, MD, September 20–22, 2005.  

The workshop was sponsored by the Information Systems Division of NASA 
Goddard and IEEE Computer Society Technical Committee on Complexity in 
Computing and IEEE Task Force on Autonomous and Autonomic Systems. The 
workshop also received generous financial support from IBM, without which the 
workshop would not have been possible. 

Agent technology, along with autonomous and autonomic computing, has 
emerged as a major field in computing, and will greatly influence the future 
development of complex computer-based systems. The area of research is strongly 
influenced by the autonomic computing initiative as well as by developments in 
biologically inspired computing, and involves interdisciplinary interaction from those 
involved in research in social intelligence, psychology, arts, biology, computer 
science, computer communications and philosophy. 

This volume includes revised versions of papers presented at the workshop. The 
workshop was structured so as to allow adequate time for discussion and interaction, 
to exchange ideas and reflect on the motivations, scientific grounds and practical 
consequences of the concepts presented. Many of the ideas are truly “radical”, and so 
authors were given time to revise their papers to reflect further thoughts on the ideas 
presented and to reflect feedback received at the workshop. 

We are grateful to Jeff Kephart for a very interesting keynote speech describing 
IBM’s current and future work in this field, which fit very well with the aims and 
scope of the workshop. 

Again, we would like to express our thanks to NASA Goddard, IEEE Computer 
Society and IBM for their support of this event. Our thanks also to Alfred Hofmann 
and Anna Kramer of Springer for their support and interest in publishing these 
proceedings. We hope the papers are of interest to the reader, and we hope to 
welcome you soon to the next Workshop on Radical Agent Concepts. 

October 2006       Mike Hinchey 
Patricia Rago  

Jim Rash  
Chris Rouff  
Roy Sterritt 

Walt Truszkowski 
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Agent-Mediated Pro-active Web-Sites 

Karin Breitman1 and Walt Truszkowski2 

1 Pontificia Universidade do Rio de Janeiro 
karin@inf.puc-rio.br 

2 NASA Goddard Space Flight Center 
Walt.Truszkowski@nasa.gov 

Abstract. In this paper we explore the concept of a Semantic Desktop in which 
software applications will be responsible for the automation of otherwise 
tedious tasks and the update of user information. We propose an ontology 
driven software agent solution where two major issues stand out: architecture 
and process. The architecture issue addresses the current static nature of 
information on a web page. In order to achieve the level of pro-activity desired 
we have to be able to identify, classify and code important bits of semantic 
information in a way that can be automatically manipulated by  machines. The 
second issue relates to the strategy/strategies used to dynamically update 
information. Because of the variety of actions needed to update web sites e.g., 
monitoring changes to personal information (phone numbers, addresses, 
hobbies, etc.), maintaining a knowledge of institutional information, reacting to 
external events, reaction to political and environmental changes, etc., we 
hypothesize that no single strategy for maintaining dynamic information-
awareness will do but that a variety of strategies need to be put into practice. 
We propose the creation of a community of software agents, each responsible 
for achieving a different set of tasks. The Semantic Desktop is achieved through 
the composition of the site semantics with the functionality provided by the 
instantiated software agents. 

1   Introduction 

A few years ago, we were all impressed by the statistics that over a million VCRs 
were constantly blinking “00:00” because their users were either ignorant about how 
to correct the situation or did not care to update the time. The same situation seems to 
be happening to personal web sites. Owners, too busy to update information, 
sometimes leave their pages unattended for years. Nothing is more frustrating than 
finding an interesting web-site that is not current   A major contributing reason for 
out-of-date web-sites is rooted in the very nature of the web itself. Information 
changes so rapidly that most users feel that by the time they make needed adjustments 
to their web-site, it is already becoming obsolete. In this paper we argue that it is 
possible to semi automate the information-update process with the use of emergent 
software-agent technology [Williams04, Pazzani02, Woolridge99, Sycara98]. 

The basic idea, explored and expounded upon in this paper, is to make web-sites 
more pro-active in providing user centered services and updating their posted 
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information.  In order to do this, there needs to be access to web-based information in 
a format that allows for automatic manipulation of the data. The exponential growth 
of the Internet has dramatically increased the number of available electronic 
resources, e.g. articles, books, web pages and data repositories, making it more 
difficult to find, manipulate and present information without the aid of automation 
[Fensel02].  

Researchers worldwide are investigating the possibility of creating a Semantic 
Web, an improvement to today's web, in which resources will be given meaning 
through machine processable/parseable languages [Berners-Lee01]. As a result, a 
gamut of new technologies has emerged. Among others there is the use of metadata, 
ontologies, semantic web services, semantic navigation, and software agents. We will 
explore these technologies as they pertain to the novel approach to the development of 
self adapting web sites that we are proposing. 

2   Metadata 

Most of the information available in the web today is formatted for user consumption, 
i.e, machines play a very small role in the interpretation and processing of information. 
Most data is captured using markup languages that rely on the use of tags or labels that 
have meaning to human beings alone. Other than processing some interfaces cues, such 
as font, color and heading placements, computers are able to process a very small share 
of the available information in the nearing 8 billion web pages.  

In order to allow computers to take up a larger share of the processing, we have to 
provide information in a format that allows for automatic manipulation. Researchers 
worldwide are investigating the possibility of creating a Semantic Web, an 
improvement to today's web in which resources will be given meaning through 
machine processable languages [Berners-Lee01, Antoniou04, Gómez-Pérez04]. As a 
result a gamut of new technologies have emerged. Among others there is the use of 
metadata, ontologies, semantic web services, semantic navigation, and software 
agents. We will explore some of these technologies as to provide a novel approach to 
the development of the proposed Scientific Desktop.  

In our understanding, the information relevant to the Scientific Desktop is a 
composition of  hybrid elements, text, image, sound or video content. The set of 
elements are typically interrelated and organized in some coherent, however domain 
dependent fashion, e.g., in a personal web page we expect to find the information of 
an individual in the top of a page whereas at product page we would expect its 
specifications to come before the manufacturer's contact data.  

A first step in the preparation of the information for automated processing is 
identifying a Taxonomy of information types, e.g. research area, technology used, 
contact information, institutional policies. That is not a trivial task, for the relevant 
information is presented in varying degrees of abstraction, for example: 

• High level (general) – what the person is: researcher, vendor, 
businessman… 

• Medium level – if researcher, what area: types of events, technology (if 
any), association to laboratories, entities (NFS, for instance), institutions, 
standards and rules that it must abide to.... 
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• Low level (specific) – specific interests, colleagues it works with, 
institutions is connected to, special interest groups and associations he or she 
belongs to… 

 
Once we identify the information type, it is possible to associate an adequate 

Metadata, data about data, representation for the information in question [Gilliland-
Sweland97]. In the Research & Academic context most types of information are 
already organized by some existing taxonomy, such as the list of the Computer 
Science sub areas by IEEE or the NAICS. Those have to be “re-written” in some 
metadata compatible language, RDF for instance. Other examples are: 

• People – Friend of a Friend, 
• Publications – Dublin Core, 
• Projects – RDF Taxonomy structured as the NFS list of research areas, 
• Areas – RDF Taxonomy structured as the Societies lists of topics (for CS we 

could use IEEE’s Computing Society), 
• Physical Location and Contact information – RDF version of the University 

Directory, Floor Plan, vCard taxonomy, 
• Academic Undergrad/Graduate Courses – RDF version of the University 

Catalogue. 

We exemplify those information chunks using the example of the home page of a 
researcher, depicted in Figure 1. Bellow we list a series of information chunks that 
represent the information that is available on the page.  

Information available: 
Bio, Bibliographical Production

(Conference Proceedings, Tech
Reports, Books, chapters), People
(Colleagues, Students, Fellow
Research Project Members), Research
areas(Requirements Engineering,
Semantic Web, Formal Systems)
Events and Conferences she is
organizing, Consulting, Activity in
Scientific Societies. 

 

Fig. 1. Researcher's Home Page 

For each item present in the page some annotation describing its provenance, 
ownership and categorization is required. To exemplify we introduce one of the many 
links to bibliographical references, in this case an article in a Conference: 

 
[Breitman04] - Breitman, K.K.; Leite, J.C.S.P - Lexicon Based Ontology Construction 

- Lecture Notes in Computer Science  2940- Editors:  Carlos Lucena, Alessandro Garcia, 
Alexander Romanovsky, et al.  -  ISBN: 3-540-21182-9 - Springer-Verlag,  February 
2004, pp.19-34. 
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Possibly the best way to describe this item would be using the Dublin Core 
Metadata Schema [Gill97, DC05], as illustrated in Figure 2. 
 

Fig. 2. Dublin Core Metadata Annotation for a bibliographical reference 

In this case there is a hierarchy of  other information nested within this reference. 
The co-author of the article, a colleague named Julio Cesar Sampaio do Prado Leite  
is an piece of information its own right and needs to be unambiguously reference. A 
possible metadata representation for it would use the FOAF (friend of a friend RDF 
markup), as follows:   

 
<rdf:RDF 
     xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#" 

     xmlns:foaf="http://xmlns.com/foaf/0.1/"> 
<foaf:Person> 
      <foaf:name >Julio Cesar Sampaio do Prado Leite</foaf:name> 
      <foaf:mbox rdf:resource="mailto: julio@inf.puc-rio.br " /> 
      <foaf:nick >Julio</foaf:nick> 
      <foaf:workplacehomepage rdf:resource="http:/www.inf.puc-rio.br/~julio" />   
</foaf:Person> 

</rdf:RDF> 
 

Fig. 3. Friend of a Friend(FOAF)  RDF representation of a colleague (co-author) 

The metadata markup will be very useful in referencing and storing pieces of 
information. However its semantics is still very weak. In addition to the information 
provided about the information objects themselves, we also want to represent 
properties, rules and  relationships that are hold among information chunks. For that 
purpose we propose to adopt the use and integration of ontologies. Ontologies provide 
a shared understanding of a given domain by providing formal definition to its main 
concepts, properties and relationships that hold among those. The ontology 

Dublin Core 
____________________________________________ 
1. Subject: Software Engineering (list of subjects in IEEE) 
2. Title: Lexicon Based Ontology Construction 
3. Creator :  Karin Breitman 
4. Description: article 
5. Publisher: Springer Verlag 
6. Contributor) : Julio Cesar Sampaio do Prado Leite 
7. Date:  February 2004 
8. Type: Scientific Article 
9. Format: text 
10. Identifier :  ISBN: 3-540-21182-9 
11. Relation: ESSMA Project , C&L Tool 
12. Source:   
13. Language: English 
14. Coverage:    
15. Rights:  Springer Verlag 
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construction process is inherently compositional, in that a new domain ontology is 
usually build by reusing parts of existing ontologies.  In the case of the proposed 
Scientific Desktop, there are available ontologies that can be reused in the process 
[Gómez-Pérez98, Guarino02]. 

3   Ontology 

The metadata markup used to index the researcher's example in the last section is very 
useful in referencing and storing pieces of information, but its semantics is still very 
weak for our intended purposes. In addition to the information provided about the 
object itself, metadata,  we also want to represent properties, truths (axioms) and  
relationships that are hold among information chunks. For that purpose we adopt the 
ontological representation. An ontology, as defined by Alexander Maedche 
[Maedche02] is described by a 5-tuple containing its core elements, i.e., concepts, 
relations, hierarchy, a function that relates concepts non-taxonomically and a set of 
axioms.  The elements are defined as follows: 

 
O : =  {C, R, HC, rel, AO} consisting of : 

• Two disjoint sets, C (concepts) and R (relations), 
• A concept hierarchy, HC: HC is a directed relation HC ⊆ C x C which is called 

concept hierarchy or taxonomy. HC (C1,C2) means C1 is a subconcept of C2, 
• A function rel : R → C x C that relates the concepts non taxonomically, 
• A set of ontology axioms AO, expressed in appropriate logical language. 

 
Figure 4  illustrates a simple example of this ontological structure. We borrow 

from the Researcher's Home Page for this example. We depict three concepts,  
Project(x), Long_term_project(y) and Researcher(z),  one relation, participates_in(w) 
that holds between concept Long_tem_project and Researcher. The concept 
 

 

Fig. 4. Example of ontological elements and their relations using the ontology structure O 
proposed by [Maedche02] 
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Long_term_project is a subconcept of Project. According to the structure we have 
something like, C : = {x, y, z} and R : = {w}. The following hierarchical relation, HC 
(y,x) and the non taxonomic relation, w(y,z). 

Ontologies provide a shared understanding of a given domain by providing formal 
definition to its main concepts, properties and relationships that hold among those 
[Gruber93, Gómez-Pérez04, Fensel03, Breitman05]. The ontology construction 
process is inherently compositional, in that a new domain ontology is usually build by 
reusing parts of existing ontologies.  In the case of the Researcher Home Page 
example, we can easily identify different sources that could serve in composing the 
information chunks concept sub trees. In table 1we exemplify some possibilities. 

Table 1. Reusable Information sources for ontological composition 

Information Chunk Type Reusable Information Sources 
People FOAF Taxonomy of family and work 

relationships,  
Research Area IEEE taxonomy, NAICS 
Events University ontology, IEEE/ACM 

calendar of events 
Projects Subcategories of NSF and/or Esprit 

European projects 
Physical Location and Contact 

information 
University Directory, Floor Plan, 

vCard taxonomy  
Courses University Catalogue 

In practice most of the top nodes of the ontology, i.e., the ones that represent more 
general concepts, can be reused from existing ontologies. As we navigate down, 
specializing the concepts, we identify the need of incorporating information specific 
to that particular ontology. Most of the construction effort will be spent in the 
identification and incorporation of specialized (leaf) concepts  and their instances to 
the ontology.  

In figure 5 we show part of the Researcher Home Page ontology. We can identify 
three zones. The top most levels are concepts so general that could be used in the 
creation of any personal home page. These concepts can be reused in the spirit of 
upper ontologies, such as Cyc [OpenCyc]  and WordNet [Miller95], that embody 
consensual knowledge. 

The second zone corresponds to the specialization to the computer science area. 
We would like to call this group level specialization (university researcher in the 
computer science area). At this level reuse is viable, but requires some adaptation 
level.  

At the third and bottommost level, the concepts and instances added to the 
ontology reflect particular information about the individual that own this particular 
page. At this level very little reuse can be accomplished. Once ready, this ontology 
will model the preferences of a single, or at most a reduced number of users. Based on 
previous collaboration in the area of Human Computer Interaction, we are currently 
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investigating the possibilities of using ontologies as user models [Barbosa04, 
Pazzani97, Perkowitz04].  

This feasibility of this approach is very important to this research, because it will 
shape the architecture of the software agents we want to implement. If we are able to 
concentrate the user profile in his or her ontology, the construction and operation of 
the software agents will be more general and thus increase the level of agent reuse 
[Holvoet03].   

 

 

Fig. 5. Researcher Ontology (partial) 

In the next section we discuss the requirements and propose an architecture, based 
in the concept of ontology driven software agents, to implement the proposed 
adapting web sites.  

4   Adaptive Web-Sites 

In the previous section we discuss the organization that has to imposed to the 
information resources in order to allow for automated computer processing. The 
nature of the information suggests that there are two possible types of sources: 

• Internal (privately owned) – information that comes from the owner’s own 
computer (e-mail, recent files, articles recently written/submitted, discussion 
groups, directory structure itself...) 
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• External (worldly) – from syndication (web sites) and from a myriad of 
heterogeneous, distributed sources (conferences, publishers, Amazon, 
scientific societies, colleague home pages...) 

The current exponential growth of web accessible resources has created a demand 
for new tools to aid people cope with the volume of information. Examples of such 
tools are indexing mechanisms, used in the organization of large data repositories, 
such as the NAICS and IEEE catalogues and Yahoo's index of subjects. Balabanovic 
et al propose a system in a software agent learns users patterns and browses the 
Internet in his or her behalf [Balabanovic95]. Etzioni investigates the possibilities of 
Semantic email [Etzioni04], Rucker and  Polancon made CiteSeer available, a site 
that uses references in scientific articles that serves as guide to other works of interest 
[Rucker97]. There is a myriad of information sources available in today's web, raging 
from static elements (written text in pages and files) to the results of behavioral 
patterns such as navigation and user preferences. It is clear that different information 
mining strategies will be needed, case by case. We propose to incorporate such 
strategies in the profiles of different software agents [Jennings98, Woolridge95, 
Hendler01]. The term agent, as defined by Woolridge and Jennings denotes software 
based computer systems that enjoy the properties of : autonomy, social ability, 
reactivity and pro-activeness [Woolridge95].  

Agent based architectures became an alternative that helps deal with complexity 
and increasing volumes of information. Multi agent systems are being used to build 
information and knowledge sharing systems [Dignum03, Abecker03, Chen00] The 
MACRON architecture, proposed by Decker et al, was designed specifically for the 
proactive acquisition of information in complex information gathering environments 
[Decker05]. This architecture relies in the use of agents to find and conciliate 
heterogeneous information from different sources. Agent based systems are also being 
used to build organization information systems, such as the FRODO project, whose 
goal is to build distributed organizational memory systems. [Abecker03]. 

The architecture of our solution will be a composition of diverse software agents, 
i.e., a community of agents or multi agent system (MAS). Ferber defines a multi agent 
system as a "collection of possibly heterogeneous, computational entities, having their 
own problem solving capabilities and which are able to interact among them in order 
to reach an overall goal" [Ferber99]. Among the most distinctive characteristics of 
Multi agent systems are the decentralization of data, lack of global control and the 
fact that each individual agent has a partial view (and capabilities of solving) the 
problem [Jennings98].  

Initially we envision the creation of four agents: 

4.1   External Agents 

Syndicating Agent 
This agent will roam the web cataloguing information of interest to the site . Can be 
implemented using the RSS - Really Simple Syndication format – also called 
“feed”(XML format that allows for the update of information links on other sites). 
Growing number of adept sites (New York Time, BBC and MIT Press, among 
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others). The downside is that RSS is a XML dialect, so it provides no semantics.  We 
propose to overcome this effect by combining the use of RSS markup with ontology 
and metadata. 

Serendipity Agent 
Besides syndicating known well known pages, we propose a serendipity agent, whose 
goal is to roam the web in search of new, interesting pieces of information. The 
concepts it will be searching are those in the site ontology. The agent should identify 
important concepts and aligning those to pages in the Internet in a serendipity manner. 
Strategies can be: 

–Similarity, 
–"If you like this ...", 
–Semantic Search (ontology driven) using Google & Google Scholar.                       

4.2   Internal Agents 

Indexing Agent 
This agent will be responsible to update the site ontology based on the information 
obtained when indexing the site owner’s computer(s). It  can work in conjunction 
with indexing software, such as the Google Desktop Search Plug-in or Copernic 
desktop search. This agent will provide the information needed to update the most 
specialized links in the site ontology, files and at the Outlook address book. Because 
it indexes personal files, e-mails, and e-mail attachments stored anywhere on the 
owners PC, the information it contains reflects the owner’s personal interests and 
choices.  
 
Spy Agent 
The role of this agent is to monitor the site owner’s activities. The behavior of the site 
owner can tell much about his or her preferences, among others: 

• Internet – sites he or she visits frequently, list of preferred sites, pop ups he 
or she always dismisses. 

• Mail – monitoring the e-mail can help identify, among others: 
o Colleagues the owner corresponds frequently to, 
o Confirmation on ticket and hotel reservations (update Outlook), 
o Notification of acceptance of papers,  
o News that appeared on lists he or she subscribes to.  

5   Conclusion 

In this paper we argument in favor of an ontology driven, agent-mediated, adaptive 
web sites. Our ideas, different from the argumentation used in the customization of 
web sites based on user group navigational patterns [Pazzani97], is to create a single, 
personalized web environment that serves its owner. Among others it will automate 
tedious and repetitive tasks, such as the update of CVs, agenda, contact information, 
trip related information (directions, hotel names and locations, airplane ticketing 
information), present automatic update/alerts on what colleagues/partners are doing at 
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present (articles published, books in print, presentation they gave..), automatically 
change web pages and include new links of interest and provide an understandable 
model of the user profile (user ontology).  

We propose a flexible, compositional, customizable and extensible architecture that 
allows the site owner to decide what kind of services he or she would like to 
automate. The services provided by the software agents are mutually independent and 
can be combined as needed. New software agents can be included in the architecture 
providing additional services in the future.  

Future work includes the visualization and navigation of data in the Semantic 
Desktop context. The same information chunk, the name of a fellow researcher for 
example, may have different implications depending on the context it is encountered. 
In Figure 6 we exemplify one such situation. At the center of the figure we depict one 
information chunk, namely a researcher named Alan M. Davis. This researcher is, at 
the same time, book author, active participant in the Requirements Engineering 
Research community, participated at event X and belongs to the e-mail address book. 

 

Book 

Alan M.  
Davis 

RE 

Participants of Event

Address 

carol@acm.org

rocha@cnpq.br

Karin Breitman

Daniel Jackson

Barry Boehm

Nancy Mead

Michael Jackson

Anthony

Suzanne

John Sowa

Michael

johncv@lancaster.

 

Fig. 6. Different Contexts for the IC "Alan M. Davis" 
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This phenomena is known as Polisemy in Natural Language Processing, where the 
same word or concept may assume more than one meaning, depending on the context 
of use. Dictionaries, such as the WordNet, catalog the possible meanings, also known 
as senses, that a given concept may assume [Miller95]. Its correct interpretation 
depends on the concept itself and some understanding of the context it is being used. 
Similarly, in the case of the Semantic Desktop, some indication of context may be 
necessary, in addition to the metadata associated to the concepts in question. We are 
currently investigating the adoption of the SHDM (Semantic Hypermedia Design 
Method) [Schwabe04]. In SHDM there is an explicit separation between the 
conceptual from the navigational design of Semantic Web Applications. Our proposal 
already addresses the conceptual design of the Semantic Desktop, with the use of 
Ontology and Metadata. The navigation design, on the other hand, would be 
responsible for the organization of the information in different contexts, allowing 
users of the Semantic Desktop to visualize and navigate his or her information space 
in a relevant manner.   
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Abstract. We investigate a formal framework where agents use refer-
rals from other agents to locate high-quality service providers. Agents
have common knowledge about providers which are able to provide these
services. The performance of providers is measured by the satisfaction
obtained by agents from using their services. Provider performance varies
with their current load. We assume that agents are truthful in report-
ing interaction experiences with providers and refer the highest quality
provider known for a given task. The referral mechanism is based of the
exchange value theory. Agents exchange both the name of the provider
to use and the satisfaction obtained by using a referred provider. We
present an algorithm for selecting a service provider for a given task
which includes mechanisms for deciding when and who to ask for a
referral. This mechanism requires learning, over interactions, both the
performance levels of different service providers, as well as the quality
of referrals provided by other agents. We use a satisficing rather than
an optimizing framework, where agents are content to receive service
quality above a threshold. We experimentally demonstrate the effective-
ness of our algorithm in producing stable system configurations where
reasonable satisfaction expectations of all agents are met.

1 Introduction

Agents searching for high-quality service providers can either rely on their own
interaction experience or use referral services, or referrals from other agents. We
assume that the performance of a provider depends both on its intrinsic charac-
teristics and the current workload it is handling. There can also be some intrinsic
variabilities in the performance of a provider for the same given workload. A key
question to consider in referral systems is the motivation for referring a resource
or a provider to another agent. Agents need to find the best tradeoff between
helping others with good referrals where the expectation is to get quality refer-
rals in exchange and its potential long-term loss due to increased usage of the
referred provider by the requesting agent.

While ideally speaking agents may aspire for optimal satisfaction levels from
service providers selected for performing an assigned task, dynamic, partially
known, and open environments can render the realization of this ideal behavior

M.G. Hinchey et al. (Eds.): WRAC 2005, LNAI 3825, pp. 13–22, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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improbable. Possible sources of inefficiencies include noisy, variable feedback
about provider performance as the environment is at best partially observable
which implies all factors affecting performance are not directly observable. In
a dynamic environment the expected performance of a provider as referred by
another agent may have changed based on current load and is not necessarily
an indication of the trustworthiness of the referring agent. Besides, an agent is
unable to accurately assess the impact of its own decisions, both choosing service
providers and making referrals, on its environment.

As such it might not be feasible to seek or determine strategies for optimizing
performance. Rather, we posit that agents are concerned about finding a quality
of service which exceeds an acceptable performance threshold, γ. This formula-
tion is consistent with Simon and others view of bounded rationality of decision
makers within the context of complex organizations [2,7]. Other approaches from
game theory also use the notion of aspiration levels to stabilize systems and reach
equilibrium [1,8,9,10,12].

In this paper, we provide an approach for trading referrals using which agents
can locate high-quality service providers. Our proposal involves learning to rate
referrers and use such ratings to adjust future referrals to identify effective ser-
vice providers. We experimentally demonstrate the convergence to satisfactory
service provider selections for the entire group of peer agents.

2 Framework

We now present a framework for the environment and the algorithm representing
the decision procedure used by the agents to seek and use referrals about service
providers.

2.1 Environment

Each agent is assigned a total load of L for each of several different task types
per day. At the outset, each agent knows the set of providers that can process
each task type without the knowledge of their intrinsic capabilities, or their
performance functions. The agents are also unaware of the current service load
of any provider.

We designate E =< A, T , P > as the environment, where

– A = {ak}k=1..K is the set of agents,
– T = {tn}n=1..N is the set of task types,

– P =
N⋃

n=1

Pn where Pn = {pm
n }m=1..Mn . Mn is the number of service providers

for task type n. pm
n is a provider which can perform a task of type tn.

A provider, pm
n , is characterized by a performance function, fm

n , which models
its performance, e.g., the task processing quality. This function should satisfy
the following conditions:
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– fm
n (0) = 0

– fm
n (+∞) = +∞1

– fm
n ↗2

We assume that the performance of a provider on a particular day depends
on the total workload on that day: agents which use a provider the same day
will obtain identical performances. Any two agents, however, may have different
satisfaction levels for the same quality of performance. We represent the satis-
faction of an agent by a subjective function Sk,tn which models the satisfaction
obtained by interacting with any provider of a particular task type. To be more
precise, if perf is the performance of provider after having performed a task of
type tn then the satisfaction of the agent ak is Sk,tn(perf ).

2.2 Interaction with Other Agents

When an agent needs to process a task and is not cognizant of a satisfactory
service provider for the corresponding task type, it approaches other agents for
referrals. The model of interaction between agents is inspired by Piaget’s theory
of exchange value [3]. The asking agent aa gives its load L and the type of
the task t it has to process, which are the real values exchanged. The helping
agent ah answers by providing a name of a provider p and its estimation e of its
quality (real value). Depending on the received referral with quality estimates,
and its evaluation of the reliability or trustworthiness of the helping agent, the
asking agent may or may not use the referral. If it decides to use that referral,
it asks the referred provider to perform its task t with the load L. At the end of
that day, the provider responds with a value, perf , representing the quality of
service. perf depends on the provider’s load for the day and on its performance
function, f . More precisely, if Lt is the sum of all loads on to this provider
then perf = f(Lt). The asking agent computes the satisfaction s it gets given
perf by using its satisfaction function Sk,tn (s = Sk,tn(perf )). Finally, this agent
communicates this virtual value to the helping agent. aa regards s as a debit
to ah and ah regards s as credit from aa. An agent expects others to help it in
return when it has previously done. Consequently, it may have the incentive to
ask for help those ones it has helped, i.e., those for which it has a lot of credits. In
this model, we assume agents are truthful in reporting their satisfaction obtained
from using a referred provider.

In addition to finding quality service providers via referrals, agents also benefit
from learning about the quality of referrals provided by peer agents. Agents
keep track of their previous interactions with others in order to identify agents
who have helped, i.e., provided high-quality referrals. Correspondingly, an agent
may be inclined to help those who have helped in the past and less inclined to
provide referrals to others. Besides, the information recorded about referrers can
be useful to estimate the quality of a provider.
1 fm

n (+∞) = +∞ denotes lim
x→+∞

fm
n (x) = +∞.

2 ↗ (↘) means a function is increasing (decreasing).
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2.3 Information Recorded by an Agent

An agent ak will keep track of the following information from its interaction with
others where Si is the satisfaction obtained on day di:

– Γ m
n = [ (Si, di) ] list of satisfactions obtained by the agent ak from providers

pm
n ,

– Ckk′ = 〈[ (Si, di) ]〉 is a vector of lists of its credit with agent ak′ .
– Dkk′ = 〈[ (Si, di) ]〉 is a vector of lists of its debit with agent ak′ .
– Δkk′ = 〈[ (Si, di) ]〉 is a vector of lists of the difference between the actual

satisfaction obtained from provider referred by ak′ and the estimation agent
ak′ gives for that provider. This information will be useful for ak to evaluate
future referrals.

The Ckk′ , Dkk′ , and Δkk′ vectors are indexed by task types, i.e., the jth element
of such a vector contains data about interactions involving tasks of type j.

2.4 Satisfaction Criteria

As we have argued previously, in a distributed, open, dynamic environment, it
might be more meaningful to seek satisficing rather than optimal performance.
This is particularly true in our framework as the number of service providers,
their load and hence quality, the peer referring agents as well as their estima-
tions of different service providers can all vary over time. We present a satisficing
approach to service provider selection where agents will not consider switching
from a service provider if the latter’s performance is above a pre-specified thresh-
old or aspiration level. We say that an agent ak is satisfied by the performance
of a provider with performance higher than a threshold γk,n for tasks of type tn.

2.5 Evaluating a Referrer or a Provider

We present a recency-biased weighting scheme on past interactions to estimate
the performance of a provider or the referral ability of another agent.

Definition 1 (Weighted mean and weighted standard deviation) Let
S = [ (Si, di) ]i∈I where Si is the satisfaction got at date di. Let d be the current
day. Let ω be a function such that ω is a decreasing function, ω(0) = 1. We call
mean and standard deviation weighted by ω the values

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

μω(S) =

|I|∑
i=1

ω(d − di) · Si

|I|∑
i=1

ω(d − di)

σω(S) =
( |I|∑

i=1

(
ω(d − di) · Si − μω(S)

)2
) 1

2
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The function ω determines the emphasis placed by an agent on interactions over
time. If ω(d) = 1 ∀d then we get the classical statistical measures of unweighted
mean and standard deviation. Besides, the quicker ω decreases the closer μω is
to recent obtained satisfaction.

Definition 2 (Weighted experience) Let e be a function such that e(0) = 1,
e(+∞) = 0 and e ↘. We call experience for S, denoted eS = [ (Si, di) ]i∈I the

value
|I|∑
i=1

e(d − di).

Definition 3 (Class of Usefulness functions) The usefulness function of
an agent ak (UF), hk, are functions such that hk : [0, 1] × R �→ [0, 1] (the first
argument is the mean of performance, the second is the experience),
hk(m, 0) = 0, hk(m, +∞) = m, hk(m, ·) ↗
hk(0, e) = 0, hk(·, e) ↗

The function hk combines both the rating an agent has about another agent or a
service provider and the amount of experience it has with that entity. The more
the experience the more reliance the agent places on the ratings. In other words,
μω allows an agent to assess others. e is a measure of the amount of confidence
an agent may have of its evaluation. Indeed, the more the experience the more
reliance the agent places on the ratings.

2.6 Finding an Agent for Seeking Referral

When agent ak needs a referral it tries to find an agent which has in the past
referred high-quality providers and is also willing to provide referrals and have
been consistent in returning help-giving behavior. Each agent ak′ is assigned
a likelihood ωk′ which increases with the quality qk′ of previous referral given
for the task ak’s task tn: qk′ = hk

(
μω(Dkk′ [tn]), eDkk′ [tn]

)
. Additionally, ak will

be inclined to help agents which had helped previously. Let bal(ak, ak′) be the
difference between all credits and all debits of ak from ak′ . bal(ak, ak′) > 0 means
ak has given more information to ak′ than it has received from it. An agent will
prefer agents with which it has more credit: ωk′ increases with bal(ak, ak′).

2.7 Performing a Task

When agent ak needs to perform a task, it evaluates the expected satisfaction
for a provider pm

n as Sm
n = hk(μω(Γ m

n ), eΓ m
n

). It will choose the provider with
the greatest expected satisfaction if that is greater than γk.

If ak thinks it may not get the satisfaction it expects given the information
it has collected previously, it will ask other agents for referral. A referrer ak′ is
chosen as described above (Section 2.6). ak′ is approached by ak as described in
Section 2.2. ak′ answers by given an estimation of the quality qk′ of the referral it
is giving. ak will correct qk′ by using the information it has collected in Δkk′ [tn]
(defined in Section 2.3). Let ε be a number chosen from Gaussian distribution
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N
(
μω(Δkk′ [tn]), σω(Δkk′ [tn])

)
. qk′ is corrected by adding ε to it. ak corrects the

estimation of ak′ since the way of evaluating a provider is not necessarily the
same between two agents (different satisfaction functions). Besides, it helps also
to correct possible deception attempts. The referral is chosen with probability
qk′ . If it is not chosen, another agent will be approached. If no provider has been
chosen when all agents have given their referrals, then a referral will be chosen
among those previously referred with likelihood qk′ .

Once a provider is elected, it is asked to perform the task with load L. At the
end of the day this provider will return a value of the performance perf with
which it performed the task. perf is computed with the performance function f
with the sum of all loads ordered during the day as parameter.

2.8 Responding to a Request for Referral

When approached for referral, we assume that the helping agent refers the best
service provider known to it for the corresponding task type. Therefore, the agent
refers the provider it thinks is the best given its estimation for the expected
quality of service. We also limit the effects of chains of referrals on the stability
of the system by imposing the restriction that an agent is not allowed to refer a
provider it previously received as a referral.

3 Characterizing Satisficing System States

In this section, our objective is to characterize preferable distribution of agents
over providers based on agent and provider parameters like Sk,tn , fm

n , etc.
In this initial study, we restrict ourselves to a specific variant of the general

model we have described above:

– the number of providers is constant equal to M over each type
– the load of an agent is the constant, L, for each type and for each day and

is equal for all agents
– the satisfaction function Sk,tn and the aspiration level, γk,n, is the same for

each agent and for each task type and is denoted by γ.

The satisfaction obtained by an agent when using a service provider on a given
day depends only on the performance function of that provider and the total
load on that provider for that day.

Definition 4 (Distribution of agents over providers) We call distribut-
ion of agents over providers for a type tn the set Dn = {Am}m=1..M such
that:

– Am ⊆ A (Am may be empty)

–
M⋃

m=1

Am = A

– m1 �= m2 =⇒ Am1

⋂
Am2 = ∅
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Definition 5 (Set of satisfaction of a distribution) The set of satisfaction
of a distribution of agents over providers (denoted by S(Dn)) is the set of sat-

isfactions obtained by the agents in that distribution. More formally, S(Dn)
def
=

{S(|Am| · L)}m=1..M . Note that this is a set with no duplicate values.

Definition 6 (γ-acceptable distribution) A distribution Dn is called γ-
bacceptable if and only if

∀s ∈ S(Dn) γ ≤ s

A γ-acceptable distribution is a distribution where the satisfaction of each agent
from the provider it is currently using is more than its aspiration level. If agents
arrive at such a distribution, they will not be willing to change their choice of
service providers, and hence the system will be in equilibrium.

4 Experimental Results

We have implemented this framework by choosing the following parameters: 5
different task types, 10 agents, L = 1, the performance functions of providers
are equal to (α ·x+β)3 −β3 (we have used β = 1), and the satisfaction function

of agents are equal to
1

1 + 0.7 · x2 .

We have run several sets of experiments by varying γ, the number of providers
and the parameter α. We observe if the daily distribution has stabilized after
some days and if the final distribution is γ-acceptable. The table 1 shows the set
of satisfaction given the following configuration of service providers:

– 3 providers with α = 0.1
– 2 providers with α = 0.12
– 3 providers with α = 0.15
– 4 providers with α = 1

We observe that for γ ∈ {0.6, 0.7}, there is convergence to a γ-acceptable
distribution. In the case γ = 0.6 there exists two γ-acceptable distributions:
both of them occur in our runs and there is no particular way to predict which
one will be selected. When γ = 0.7 only one γ-acceptable distribution exist and
hence it is the distribution which is chosen by agents. For γ = 0.75 no stable
behavior is observed. In this case, there is no γ-acceptable distribution. So, the
system cannot stabilize since when some agents are unsatisfied, they prevent
others from being satisfied by continuing to move from one provider to another.

4.1 Influence of γ on the Speed of Convergence

We further evaluate the influence of γ on the speed of convergence to satisfactory
distributions. For each value of γ we run 10 experiments and calculate the average
number of days necessary to reach the convergence (see Figure 1). We can see
that for small values of γ the convergence is reached very quickly. In these cases,
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Table 1. S(Dn)

γ S(Dn) for Type i

0.6

– i = 1 {0.93, 0.9, 0.84, 0.73}
– i = 2 {0.93, 0.84, 0.73, 0.63}
– i = 3 {0.93, 0.9, 0.84, 0.73}
– i = 4 {0.93, 0.9, 0.84, 0.73}
– i = 5 {0.9, 0.84, 0.73, 0.63}

0.7

– i = 1 {0.93, 0.9, 0.84, 0.73}
– i = 2 {0.93, 0.9, 0.84, 0.73}
– i = 3 {0.93, 0.9, 0.84, 0.73}
– i = 4 {0.93, 0.9, 0.84, 0.73}
– i = 5 {0.93, 0.9, 0.84, 0.73}

0.75 No convergence

the number of γ-acceptable distributions is high and so is the probability of
finding one which leads to quick convergence. However, when γ gets close to
0.75 the number day required to find out a distribution where every agent is
satisfied increases significantly. This is explained by the fact the number of γ-
acceptable distributions become very small in this range: 2 for γ = 0.65 and 1
for γ = 0.7.

4.2 A Case with a Continuous Load

We also ran experiments with the same configurations as before but with a daily
load which follows a normal distribution with a mean equal to 1 and a standard
deviation equal to 0.5. We wanted to compare convergence results in this case
with the constant load situation. We ran a 300 day simulation and calculated
the average daily load of each provider for the last fifty simulation days. We
present in Table 2 the average satisfactions obtained by each agent. We can
see that when γ ∈ {0.5, 0.6, 0.65} the average satisfaction is “γ-acceptable”.
Consequently, we can expect some kind of convergence for the continuous case.

5 Related Work

Referral systems have recently received increasing attention among multiagent
researchers. In [11], Yu and Singh study a referral system when an agent helps
the human user find relevant expertise and protect him/her from too many
irrelevant requests. In our previous work we have studied the use of referrals
to locate service providers when an agent first enters a new community with
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Fig. 1. Effect of γ on the number of days required to reach convergence

Table 2. Satisfaction obtained by agents with a continuous daily load

γ Average satisfaction

0.5 {0.88 0.77 0.72 1 1 0.90 0.89 0.83 0.83 0.81}
0.6 {0.84 0.80 0.79 0.91 0.97 0.82 0.82 0.83 0.87 0.88}
0.65 {0.85 0.85 0.77 0.81 0.76 0.99 0.99 0.75 0.79 0.87}
0.7 {0.87 0.83 0.83 0.28 0.65 0.83 0.88 0.90 0.83 0.88}
0.8 {0.880.87 0.88 0.065 0.072 0.87 0.89 0.87 0.86 0.82}

no prior knowledge of the quality of service providers or the reliability of the
referrers [5,6]. The use of exchange values, motivated by Piaget’s theory, for
social reasoning in artificial societies is discussed in [4].

6 Conclusion and Future Work

We have presented a framework for agents to choose high-quality service
providers by utilizing referrals from other peer agents. We assume that the qual-
ity of service provided depends on the intrinsic properties of a provider and
the total workload it faces on a given day. Our model accommodates different
satisfaction levels for different agents for the same provider performance. We
are primarily interested in agents making satisficing choices in that they do not
change providers as long as their satisfaction exceeds an a priori aspiration level.

Agents need to learn both the quality of service providers as well as the
capability of other agents as referrers. Experimental results confirm convergence
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of agent populations to service providers in satisficing distributions for a large
range of aspiration levels, both for constant and varying task loads for agents.

We are currently working on theoretically characterizing requirements for con-
vergence to satisfactory distributions. This paper makes some simplistic assump-
tions of agent truthfulness while reporting satisfaction to referrers, providing best
referrals when asked, always responding to request for referrals, etc. We plan to
investigate more complex scenarios involving exploitative and deliberately ma-
licious agents in the population.
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Abstract. Industrial need new technologies to make evolved methods, strategy
and capacity. Decision-making plays an important role in the case of the robot
evolving in an instable environment, and enables us to decreasing the human fac-
tor in the control system. This paper presents a model based on brain construction
to give a restricted emotion to a machine in order to control a multitude of en-
tities. Emotion permits to make a rapid decision in a hostile environment. The
method used to build this system is based on Massive MultiAgent System (Mas-
sive MAS). It enables us to have a vast number of entities with an asynchronous
communication.The morphologic aspect is used to observe the agents behavior
with the aim to generate a restricted emotion in order to make an action plan.

1 Introduction

New technologies help industrial to develop knowledge in communication, exchange,
security, cryptography and others. Data and decisions are critical, that is the reason why
all computing tasks are managed by a human factor.

A good example is the Unmanned Aerial Vehicles (UAV) to search information. This
technology is controlled by humans, but the dangerous task is managed by the machine.
It is an interesting technology but it is hard to be used in an hostile environment. It is
a reason to give a more important role to a computer. This decision allows to mimic
a human in a decision-making process. There is important needs in computer science
to succeed in this ambitious project because dataflow is very important in an unstable
environment in constant evolution. A good solution would be a control system soft-
ware based on human emotions [1] for the decision making, with a simulation section
for the training and the composition of autonomous. Some work proved that emotions
have a link with human decision-making such as Bechara’s work presented in [2] or
also Lerner’s work presented in [3]. A software with these features is in development,
its codename isPALOMA. It is developed with the oz/mozart system [4] [5] to have a
maximal concurrency and a high message passing. This paper focuses on the decision-
making model.

M.G. Hinchey et al. (Eds.): WRAC 2005, LNAI 3825, pp. 23–32, 2006.
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2 Aims

The human brain process different pulse and allow human-use of nervous system. Pulse
have a role in the knowledge processing which is saved in the gray matter, and it is
proved that emotion is a pulse and has also a role in the decison-making. Matter, pulse
and physiology are the base of the brain operation. This unit is adaptative, allows to
generate decisons, emotions, create thoughts and ideas.

The goal of this project section is to build an adaptative system mirroring the emo-
tional and inentional human behavior as suggested and developed by Cardon [1] to
make decisions in an unstable environment with a multiagent system.

3 Project

The project PALOMA is developed to simulate and build an autonomous system. It pro-
vides for the construction of an environment for a particular problematic with coher-
ence, naturalness and reality. This tool is described by Camus and El Kadhi in [6]. As a
part of the global PALOMA project, this paper details the development of the decision-
making level (DML) based on the brain construction for a Sony Aibo. In this DML, We
rely on a particular approach based on the mirroring of the human nervous system as
described by the neuroscience research community [7]. The goal of this section is to
build a system allowing an intentional behavior based on emotions.

4 Machine Representation

In this work, a machine is represented as an entity with two levels: hardware and soft-
ware. These two levels cooperate and evolve together. The hardware is composed of
multiple sensors and effectors. The software is, in fact, the brain of the hardware. It is
not embedded in the machine, but is installed on a workstation where several calculus
of the software can be distributed on a network, such as in the figure 1. In an Aibo,
we have engines for legs, a microphone, a video camera associated with different sen-
sory sensors and distance sensor to interpret a scene. Each sensor and effector has a
role and measures a specific action in an environment. The “brain” component for the
Aibo application is, for us, a multiagents system gathered in a polymorphic geometri-
cal form that represents the emotional behavior of the entity during a decision-making
event.

5 Multiagent System Architecture and Aspectual Agent

MultiAgents System enables us to mimic the complex mechanism of the generation of
emotions [8]. To reach this goal, different roles are defined. They allow the data process
with importance and quality priority. The term used here is “agentification" in french,
the effectivness system depends on this action.
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Fig. 1. Workstation and environment

Definition: A role is related to a knowledge base. It is for example, the recognition of a
specific object saved in the knowledge base in the environment.

Agent structure is common to all the MAS, only their role differs. A role is a domain of
knowledge, there is different group of roles in the system. This structure is presented in
figure 2. It is simple because the important points are the system organization, the roles,
the agents number and not the agent complexity. An agent is composed of a knowledge
base with intentions and goals, with a communication API and an inference engine.

Definition: A goal is a search action to find values which are in the domain of the
knowledge base.

Definition: An intention is a list of actions to succeed a goal.

Knowledge base is crucial, it directs an agent towards a specific role. For example, in a
UAV, an agent can be interested in the obstacle detection and not in the threats on the
ground. These threats will have a particular interest for other agents.

A central element in this architecture is the agent state. The different states are rep-
resented by a dynamic graph, with a history, and the possible states. The actual state is
transmited towards agents with different roles.This state is conform to the knowledge
base. This information transit is very important, it is the core of the system. The com-
munication API must be powered to decrease the latency time between requests and
answers.

The agent knowledge allows to have a state on process actions. The processing of
actions are called "intentions”. After a data processing, an agent has intentions to reach
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Fig. 3. Goals ans intentions

a specific goal. This system is presented in Figure 3 where we can see an intention stack
and a list of goals. These two elements are synchronized and communicate directly with
the inference engine to treat the base.

6 Brain Features

Let us, now, specify the capacities of the “brain” system. To evolve cleverly in an in-
stable environment, a robot must be able to collect data, analyze, make-decisions and
then act according to its goals. This is the natural human behavior such as presented in
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[9] by Kolb and Whishaw. Our approach to decision-making in an hostile environment
allows us to divide these capacities in five crucial levels:

1. Represent a contextual situation.
2. Direct the attention on particular elements (objects or actions).
3. Feel emotions based on these elements.
4. Build behavior action plans.
5. React to the action feedback of an object.

These levels are developed step by step with a multiagent system vision and are detailed
in the following sections.

6.1 Description

The first level is a scene representation. Aibo sensors, such as sensory sensor, distance
sensor and the video camera, allow to process environment data to give a contextual
position to the Aibo. The goal of the camera is to recognize some simple forms such a
door, a wall, a chair and others. The camera data are processed by a neural network em-
bedded in any agents of the system in order to build a little vision ontology. This vision
ontology is associated with the sensors ontology and is distributed in the multiagent
system with different links.

The second level associates the goals of the robot with its environmental knowledge.
The goal is to give priority to some objects or actions in the environment. Let us take
an example: if the goal of the Aibo is to be near its owner all the time, the processing
priority is the movement of the owner for the action, and, for example, the shoes of the
master for the object. This method allows us to select data in the information flux to
increase the system treatment.

The third level works on the multiagent system morphology to detect particular geo-
metrical forms stable in a timeline. This form is analyzed by a method presented by
Campagne in [10]. It allows us to recognize and classify the different geometrical forms
as an emotion generated by the robot during its evolution in the environment and during
the recognition of objects and actions.

The fourth level creates a relationship between the cognition and the action. The
word “behavior” is used for the “reactions” of the robot to the environment (the robot
uses its effectors to act on the environment). For a cognition degree, there is a succession
of actions on different effectors. More the cognition degree is high, more the list of
actions is specified.

The fifth level is a continual and infinite bidirectional interaction and adaptation
between the environment and the robot behavior. For each action, there exists feedback,
a relationship between sensors and effectors. The attention of the robot evolves with the
actions processed in the environment. Cognition and action are treated in parallel in the
multiagent system.

6.2 Organisation

The organisation of the multiagent system is based on the “aspectual” agent type pre-
sented by Cardon in [11]. It is a multi-level representation. In the case of an Unmanned



28 M. Camus and A. Cardon

Aerial Vehicle (UAV) simulation for example, UAV is not limited at an agent, but is
represented by a multiagent system. It represents a situation by features (called struc-
turing organisation which is also presented in [11] and [1]), interpretes a scene to make
decisions, and finds the adapted moment to act on the environment with a continual
utilisation of the morphologic control. The system evolved in the environment with a
systemic loop:

sensors −→ representation −→ effectors −→ sensors.

An emotion is generated with an emergence on several knowledge. Emotion is not a
simple variable with an applicative field such as fuzzy logic, but rather an agent proces-
sus with a particular activity form in the structuring organization of the multiagent sys-
tem. There is a strong analogy on the operating mode and the data exchange between
the meso-limbic and the neocortex of the human brain.

A human or any other entity evolving in an environment treats all information simul-
taneously. The DML presented in this paper obeys the same constraints and suggests a
parallel information treatment and communication. This theory is exposed by Kolb and
Whishaw in [9] where authors present the different links between brain and behavior in
general. Another major fact is the representation of links between sensors and effectors.
For our case, this representation ensures the exchange between hardware and software.
We suggest gathering our system components (sensors and effectors) according to a sim-
ple record based on sensor and effector capacity. This method allows us to add or delete
sensors or effectors dynamically to increase or decrease the global capacity of the system.

6.3 Message Passing and Semantic

Exchange data and organisation can be processed with a communication between
agents. This communication is specific for each role type. Oz language allows us to
specify a particular design to manage, create, or delete messages linked to a role. With
this exchange, several agents have acointance with others and we can observe the com-
munication between agents to note an emergence on one or several roles [11]. The
communication is crucial. We used semantic in thread message passing to mirror pulse,
physiology and matter used in the brain. We can have questions on the semantic us-
ing such as: how a word is represented in the brain? where this word is saved? how
uses this word to compose a sentence? Several research have proved that the brain is
a continue and parallel serial image [12]. This image is view in tri-dimension, it is a
four-dimension view of the brain. This processing proved that a word, a knowledge,
is not saved in a particular region of the brain. All the knowledge is distributed in the
brain and we used pulse, physiology and the matter to create a specific geometrical
form adapted to a context in the environment [13] and communicated at ohter person
with the language. More a person has vocabulary, more it could explained it. Here, se-
mantic is used to build a definition, an abstraction of an emergence. This emergence is
a strong link between different knowledge distributed in the system. This knowledge is
represented by a tri-dimensional graph1 with different distance between words2

1 This graph is a parallel view of the general communication between agents in the system.
2 A word can be an object such as a ball, a keybord, or a verb such as “Play”, “Work” and other.

It is possible to have an adjective such as “Beautiful” or “Tall”.
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7 Results

Severals levels in the developpement have been checked such the control system based
on the morphology, the asynchronous communication between agents and the systemic
loop.

The theory of the control system has been validated by the defense of a Philosophia
Doctor thesis by Campagne. The title of his thesis is in english: “Multiagent System
and Morphology” [14]. This theory was been applicated with the language Oz.

The asynchronous communication between agents has been developped with the
concurency feature of the Oz/Mozart system. This feature is composed of “thread” and
“message passing”, tow tools directly include in the language. There is different type of
message in the organisation of agents. A mutiplexer has been developped to manage all
messages in the developped system. With this tool, it is easy to send a message towards
a specific agent or a specific group. Figure 4 shows the multiplexer and its role in the
communication system.

Messages

n

Agents Mutiplexer

n

Agents

n messages n messagesManaged

Fig. 4. Communication system between agents

The systemic loop allows us to treat data of different Aibo sensors to build a repre-
sentation of the scene, generate a restricted emotion, make a decison and applied this
decision with the Aibo effectors and evaluated the result with the processing of the re-
turn data. This result show us a specific organisation, a knowledge emergence such as
in the figure 5. Currently, the movements of the Aibo are limited besause the ontology
is tiny at this time. Now, the work is to increase the ontology and linked this ontology
to more capacities of the robot.

Tools are developed for the DML, such as a user interface with an “Opengl” represen-
tation of the agents (Figure 5), to create different experiences and follow the evolution
of the geometrical form generated by the structuring organization: an artificial mental
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Fig. 5. Communication between agents

Fig. 6. Geometrical form

represention of the emotion such as shown in the figure 6. It is possible to give different
parameters to the application to build the system such as the sensors, effectors and
agents number. The different links between the agents, or the control method for the
communication in the multiagent system.



Towards an Emotional Decision-Making 31

8 Conclusion

Decision-making without human factor is crucial for an autonomous entity such as a
robot, an unmanned vehicle, or a server in an international compagny. To succeed in
autonomous system, it is interressant to abord different point of view, and one of these
view is to create a system which mimic the human nervous system. Mirroring the human
brain is also the aim of the artificial intelligence, may be that the existent technology
allow us to create this system, it is a one of the major goal of this project.

Multiagent system allows us to mimic the intentionality production in the brain. It is
a specific organisation of the system with an emergence on several knowledge recognize
in the environment to build a representation of a scene. This method is possible with a
distribution of the knowledge base in the multiagent system. This emergence highlights
a part of the knowledge of the system. If these knowledges match with the goal of the
system, a decision can be made, an emotion is highlighted. This decision is not optimal,
there is a continue evaluation to proved the quality of the decision and direct the system
on a part of its knowledge to succeed a goal if it is necessary. All the system is processed
such as a systemic loop evolving in an instable environment. Knowledge are updated in
the time line, this event increase the capacities of the system.

The project is developed with the system Oz/mozart [5]. Oz is a multi-paradigm lan-
guage with scripting programming, object programming, logic programming and con-
straints programming. It allows us to use different paradigms such as the concurrency
to develop a multiagent system with asynchronous communication using the message
passing, or the constraints programming to create different action plans. It will be in-
teressant to try a direct learning to use the different sensors and effectors on a robot to
transformed a hardware system to a polymorphic hardware system.
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Abstract. We tackle the notion of self-adaptive systems in an organizational 
way as complex systems with strong motivated autonomous behavior leading to 
the emotions. The main applications of such systems are in autonomous robots. 
We show that we need a new approach to build such systems where we use an 
adaptive construction grounded on software organizations of agents, using inner 
loops like the feedback loops of electronic, but in the agent world. The man-
agement of the activations loops by the system itself, using the notion of shape 
of the loops, expresses the concept computable concept of emotion. 

1   Introduction 

The emotions are often weighed up like the behavior of a person dependent on his/her 
particular situation in environment. Because the emotions have no rational characters, 
expressing the aptitudes of the individuals, one doesn't take them into account in the 
development of the traditional data processing systems. One searched for therefore, in 
the data processing systems, the rational behavior, the planned, controlled and opti-
mized characters, and one didn't interest indeed to systems having characters of real 
autonomy, acting rather as they want, according to their mood of the moment. But the 
survey of such systems is of actuality today because the data processing interests to 
embarked systems where groups of robots and humans must cooperate on situations 
that can't be previously totally planned. One interest also to distributed interactive 
systems with property of robustness, having some tendencies similar the emotions. 
The emotions are the main determinants of the conservation of life in the evolution, 
and we set up they are the key of the real adapted systems interacting with humans. 

About the artificial emotion problem, in first, we have to specify what one under-
stands about emotion in neurobiology. Using these scientific concepts, we then could 
propose an architecture permitting to build a system whose the fine behavioral charac-
ters are similar pleasure or fear of the living creatures. The architecture of such a 
system will be evidently very particular and won't be like a system controlled since its 
step of conception. We will set up the hypothesis that the generation and the use of 
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emotions require a particular system, while conforming to the architecture of the  
living organisms, where the brain is not only a local functional organ.  

We will adopt a constructivist approach, where the system generating emotions 
will be constructed above a system producing rational results, but with a very strong 
coupling the two. We make the hypothesis that an emotion cannot amount to the 
changing value of a miraculous variable, but will be a specific subsystem indeed, 
complex in an organizational way. Emotion will be seen as an organizational process 
and the system generating emotions should adopt a type of functioning using a spatial 
representation of its functioning in time, with multiple inner loops of process, where 
loops of activations will be able to own-control and synchronize themselves, to rein-
force themselves or to cut down. We use, for expressing such loops, multiagent sys-
tems able to deliberately self-observe themselves geometrically in-line, property we 
develop using the notion of morphology of agent organizations [Cardon 1999],  
[Campagne 2004]. 

The model we propose is actually applied to an autonomous robot Aibo provided 
of sensors and effectors, but it also applies to all data processing systems in which 
inputs are continuous and where actions must be determined from a representation 
that the system makes itself of its situation in its environment. Using the actual tech-
nology, it is possible to built distributed systems where artificial emotional effects are 
expressed on the Man Machine Interface of each user, in a personalized feature.  

2   The Generation of Emotions in Neurobiology  

Nowadays, the generation of emotions is a well-studied problem in neurobiology. It is 
not merely about psychological knowledge, where we observe some behavioral ef-
fects, but we have the knowledge of the internal functioning of the brain in relation 
with the nervous system driving to emotional states. We will lean on the available 
results in neurobiology and transpose them to construct a similar system, having the 
same principles of architecture and functionality, but using multiagent paradigm with 
the notion of self-reconformantion. 

In biology, an emotion is a vital function of the central nervous system that triggers 
to typical states. It is a psychic and physiological behavioral state produced by a neu-
ral activity from an inductive, driving to some bodily behavior. Biologists found the 
"center of the emotions" and can precisely describe the emotional process of the pro-
duction of pleasure. The center of pleasure in the brain has the following architecture: 

• The first part of the central nervous system generating emotional behaviors is 
the hypothalamus. Nervous cells of the hypothalamus control the hormonal 
secretions of the hypophysis and so control the hunger, the thirst, the circu-
lating electrolyte rate… 

• The second component intervening in the emotional process will be limbic 
system. It is composed of the tegmental ventral area, situated to the basis of 
the brain, and of the core accumbens, situated deeply under the frontal cortex 
of amygdalins lobe. Limbic system is connected to the hypothalamus by its 
median part. It also communicates with the neo-cortex by its lateral part. The 
center of the emotion is going to communicate therefore with the whole of 
the brain.  
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• The other components of the system are the epencephala and the pituitary 
gland that generate tendencies respectively toward a goal by the production 
of dopamine, and that achieve the pleasure by the production of morphine 
molecules. 

Considering more particularly the pleasure, the called "rewards – punishments" 
system was localized and well clarified by neurobiologists. The steps permitting to 
have the generation of a pleasure emotion, are: 

1. at the beginning the system is in a state of neutral normal functioning,  
2. a signal, in the biologic meaning of this term, trigger the process of genera-

tion of a specific type of biochemical components,  
3. in Epencephala system, at the reception of the components freed by the pre-

vious process, an incentive expressed by flux of dopamine hires the system 
to enter in activation toward an expressed goal,  

4. a center of pleasure - displeasure, the pituitary gland, values the success or 
the failure of the reach of the goal stated by the incentive, generating mor-
phine molecules, and hires the pursuit of the process or makes stop. In any 
case, the action is a real process that tampers limbic system by memory  
effects. 

We propose to transpose these results in the domain of the computable data  
processing.  

3   General Architecture of a Self-adaptive System Generating 
Emotions  

The data processing always drives to the construction of a system running in a com-
puter, but the behaviors of systems are varied. One can classified the systems, accord-
ing to their behavior, in three categories.  

3.1   The Reactive Systems and the Automatic Action  

A reactive system is a system for which each event of the environment is feared like 
a stimulus that instantaneously puts in action in a way that strictly corresponds to the 
stimulus characters. There is a causal and sufficient link between outside events and 
the reactions of the system that are elements of the same nature. Link stimulus - 
action is a procedural call, a kind of reflex method. The system is constructed and 
programmed to answer some restricted class of events by automatic activations of 
procedures. 

The central problem for such systems is the control and the efficiency of the action 
event - corresponding subroutine. This type of system doesn't attach any meaning to 
its actions and only an anthropomorphic observer's can attach some emotion to its 
behavior. These systems are, with regard to their construction, very decomposable in 
clearly identified parts with, for each part, a very precise functional role. 

3.2   The Perceptive Systems and the Selective Action  

In this case, each event coming from the environment is considered as a complex fact. 
There is symbolization of the event feared, representation in an internal entity  



36 A. Cardon, J.-C. Campagne, and M. Camus 

composed of many data and using knowledge basis. This entity, that symbolizes some 
aspects of the things of the environment, is clearly defined and its structure can be 
complicated. The problem is then to well recognize the whole characters of the event 
for the precise identification and have a reaction in an appropriate manner. Some 
recognition characters permit to identify the event and to drag the system reaction 
suitable and precise. The system distinguishes elements of the environment while 
symbolizing them by many predefined characters specified by ontology. It is con-
structed with a mediating module between environment and subsystem of action, but 
it remains a solver of problems. The central problem is the fusion of data, achieving 
the loop "event, recognized symbols, structure of such symbols, interpretation, action, 
event again". These systems are, as for their construction, totally decomposable 
[Mataric 1995].  

The two types of systems, reactive and perceptive, solve the well-stated problems 
and they are constructed typically for that. Their possible property of training is of 
type backing, in view to improve their reactive performance, this one tackling the gap 
between real event and recognized one. But it exists a third type of system, of a very 
different nature. For these new systems, inspirited of the living ones, it is not anymore 
the main question to solve well-known problems in formal ways, but rather to ex-
periment possibilities of self-organization of some of their components, expressing 
problems they formulate for themselves, and treat in their own [Brooks 1991], [Dau-
tenhahn 1997]. Such a system, when it copies the behavior of a living organism, must 
have the same reason to adopt some behavior that the living organism it simulates. 
These systems, called the self-adaptive systems, have radical differences with the two 
previous ones [Cardon 2004]. 

3.3   The Self-adaptive Systems and the Motivated Action  

A self-adaptive system is a system composed of two different strongly linked parts 
[C.f. Fig 2]:  

• a substratum part, rational in way, managing the inputs and the reactive ef-
fects as well as the logical and rational automatic actions, 

• a specific part deliberately representing the current situation of the system in 
its environment, according to some subjective characters and controlling the 
substratum part. 

Such system is active for itself with the means of its structure indeed. The system 
part representing the current situation will be constituted of many entities in perma-
nent reorganization action, adapting this internal organization at a time to the actions 
towards the environment and also to its own organizational state, like in the brain. 

Self-adaptive System  

A self-adaptive system is a system composed of a rational substratum and of a 
sub-system of representation of the current situation, controlling the substratum 
and formed of entities having the capacity of adaptive reorganization. This sub-
system of representation adapts its organization at a time with the state of the 
environment, and so with its organizational state, following its own tendencies. 

Such a system can continuously construct representations of events, according to 
reasons that will be its own, according to its specific situation in its environment, 
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according to the possibilities of its structure. The notion of representation, the internal 
object that represents a scene or a thing of the environment, is first. The notion of 
adaptativity is considered in the strong sense therefore. Determinants of this represen-
tation are constituted the first, according to the capacity of the system, according to its 
organizational memory, under some stimuli, while putting an aim toward something it 
takes into consideration. The system notices something that it aims. It conceives a 
situation, elaborates some plans, and after acts. The construction of such a system is 
not merely decomposable in very precise functional parts, because its active parts can 
hold roles that evolve during the generation of plans. Its fundamental property is the 
re-organization of its active parts [Dretske 1988]. A self-adaptive system can evi-
dently degrade its structure in the one of a perceptive system, while tampering its 
organization and while having an automatic behavior. 

The Notion of Representation in a Self-adaptive System  

An artificial self-adaptive system, before to act, builds a purposeful representa-
tion of its environment, according to some own points of view. It acts while using 
this representation systematically. It set up itself in adequacy with its environ-
ment, in the sense that its representations have the tendency to consolidate its 
global internal state for adequacy with the evolutionary characters of the envi-
ronment. 

Let's note that the three systems we have presented form an architectural hierarchy: 
A self-adaptive system contains effectively subsystems that are only perceptive, every 
perceptive system containing some strictly reactive components. This hierarchical 
character corresponds to the evolution of the living organisms and also corresponds to 
the evolution of data processing systems towards the artificial life.  

The part of the self-adaptive system that will produce representations and will use 
emotions will be composed of two distinct parts [C.f. Fig. 1], as the brain in the body: 
a substrate sub-system and a specific component that represents the situation and 
emotions at a time. These two parts are:  

• a reactive sub-system, the substrate that will seize information coming from 
the environment and will execute standards actions. It will regroup the Man 
Machine Interface (MMI), sensors and effectors, bases of knowledge and 
functional modules.  

• a sub-system for the global control. This second sub-system has two parts: 
• a sub-system generating the current representation of the situation, that 

will be charged to build an effective representation of the environment 
and to construct the current plan of action, using composition of local 
plans.  

• an emotion generator sub-system, strongly coupled to the previous one 
that will explicitly express the fundamental emotional tendencies, while 
tampering the production of the representation system, altering the plan 
of action of the system in a subjective way. 

Let's note that the self-adaptive systems we consider are open in the environment 
and are very interactive. They accept continuous inputs and achieve output actions in 
efficient way. We will keep terminology "sensors, effectors" to specify inputs and 
outputs of the system, like in the robotic application.  
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Fig. 1. Self-adaptive system and the link between representational component and the one 
reifying emotions 

3.4   Emotional Tendencies and Adaptativity  

The representational component of self-adaptive systems manages continuous struc-
tural modifications, driven by its tendencies that one must consider as unavoidable. 
These systems must solve adequate reaction problems indeed, but while systemati-
cally taking account the satisfaction of their tendencies.  

Emotional Tendencies 

The self-adaptive systems are conceived so that they must satisfy the imperative 
tendencies that drive their behavior in a decisive manner. These tendencies are 
in various numbers and are contradictory. They will be called the emotional 
tendencies. They are the global light driving the modifications of the organiza-
tion of the system of representation to give a subjective tendency. 

The emotional tendencies, for the natural organisms, are emotions that advise them 
to survive, to feed, to reproduce, to maintain themselves in satisfactory situation in 
their environment... That is these reasons that drive their behaviors, first while gener-
ating some appreciable representations of their world and also allowing to act for 
reasons on their environment. And with the necessity to behave and to act imposed by 
these emotional tendencies, they are brought to solve some varied problems with 
efficiently. But the resolution of problems is therefore, for these systems, a mean and 
not a goal.  

One set up that the emotional tendencies present in the self-adaptive system must 
be numerous and must permit opposition and choice always. In the case where the 
system would have only one tendency or that all of these would be strongly in agree-
ment and constituting, for example, a hierarchy with a permanent dominant need, the 
system would amount to a reactive one, without tendencies. So, the system will be 
complex. 
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Self-adaptive System and Emotional Tendencies  

A self-adaptive system is a system where the reason to function is driven by the 
satisfaction of emotional tendency, modifying strongly its representation of the 
environment. To satisfy these tendencies, the system must adapt its sub-system of 
representation of the situation and so modify its behavior. The structure of its 
representation system will be, for that reason, very plastic. The system will mod-
ify its representations while maintaining them in a domain compliant to its emo-
tional tendencies. 

This type of adaptativity sound in an organizational way therefore, while specify-
ing that the structure of the system of representation is fundamental to constantly 
drive the action. This sub-system re-organizes itself so that the global system stands 
in structural concordance situation with solicitations of the environment, while fol-
lowing pressures of its emotional tendencies. 

The fundamental emotional tendencies, to be able to finely modify the current plan 
of action of the system, will express themselves as the characters of some organiza-
tions of software agents constituting the system of representation. Indeed, a software 
agent has two characters, active and cognitive; it represents knowledge and action, 
and is neither a particle, nor variable or process only. The fundamental emotional 
tendencies will be the global characters driving reorganizations of agent's organiza-
tions. It is a strong organizational hypothesis, since we will represent tendencies by 
types of shapes expressing the movement of agent organizations [Cardon 2004]. It is 
the geometric hypothesis about emotional tendency expression in large software agent 
organizations.  

The Fundamental Geometrical Hypothesis 

The geometrical hypothesis, with regard to the fundamental emotional tendency 
expression, consists to set up that the tendencies can be represented by some 
kinds of movements of geometric shapes in some dynamic space where speed up 
the organizations of software agents. 

4   The Multivalent Approach of a System with an Emotional  
Behavior 

The architecture of a system generating emotions is radically different of an input - 
output one stepping levels of computation according to some predefined steps. We 
have to define specific inner-control of a system producing fuzzy states as the emo-
tional ones, composed of proactive entities (entities that run for themselves), generat-
ing inner cycles of activities with specific rhythms, according to the real process of 
emotions in the brain and corresponding to different types of effective actions or 
movements. This architecture will essentially be founded on aggregation and breaking 
of software agents groups rather than formal neuron systems. 
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Expressing of an Agent Group 

Because they are proactive, organization of software agents can represent sys-
tems in a totally organizational way, where the form of the activities and the 
links between agents directly lead to an effective activity of the system, in a con-
tinuously adaptive reaction. 

4.1   Basic Computable Component Producing the Emotion: The Computable 
Oscillator  

The biologic presentation of the emotional activity describes the existence of neuron 
domains speeding up in loops, acting each other's for the propagation of flux of acti-
vations. We have to describe a system where the activity form is made of emergent 
feedback loops, positive, negative and additive. We precise the basic architectural 
element of the system with the following component, the computable oscillator: 

Computable Oscillator  

A computable oscillator is a software organization of agents whose activation 
forms quickly and by its own functioning many cycles of activity having specific 
intensity and speed.  

This notion spreads into the computable the one of systemic feedback loop. Such 
an oscillator is an organization of software agents that coordinates them, modifies the 
link of theirs activities, synchronizes some of them. The oscillator is formed by emer-
gence of a self-kept structure distinct of the other agents of the organization. Such a 
group must emerge then to control itself, to pass from a uniform state to another 
where a looped process transforms a group into an oscillator. Mathematically, it is 
about an emergent sub-graph in the strongly coupled activation of an agent organiza-
tion. Such an emergent oscillator leads to the adaptive activity the outputs of the sys-
tem and must control other attempts of emergent loops. 

The running system will be formed of a structured set of such elementary oscilla-
tors, permitting a global and local backing and the inhibition and the stop of the proc-
ess. There is no central controller in the system but self-control distributed into the 
emerging components and their synchronization using negotiations. The system will 
function by self-control and self-regulation of its oscillators, with local limits cycles 
and a general faculty more or less conservative. 

4.2   Typical Element of the Architecture: The Adaptive Component 

One considers a system with a sub-system composed of interfaces and material com-
ponents, and with a specific part generating representations and emotions, the two 
being very strongly linked. The generating system is composed, at the minimal level, 
of a set of agent organizations called the aspectual agents, able to easily produce by 
emergence groups of some computable oscillators. This architecture is typically evo-
lutionary. From the inputs of the system, regrouped into classes according to data (the 
sensors for a robot), the system should produce lot of loops during its activation. 
There is not initial state driving automatically to a specific state of reaction, but un-
ceasing transformations driving to progressive actions. 
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The very basic element of conception of the system is the aspectual agent  
[Cardon - Lesage 1998]. It is a software agent, typically proactive, whose role is at a 
time factual and symbolic. These agents serve to form some subsystems similar to 
those of the limbic one into the human brain. An oscillator is a group of synchronized 
agents that emerges and exert some power on its context. For the emergent and the 
control of this oscillator, we represent the behavior of every agent group by a mecha-
nism of self-observation founded on the geometric shape of the agents' activities. We 
are going to associate to the notion of behavior of all agent groups the one of geomet-
ric shape. We hear shape into the classic geometric sense of the term, like hyper-
graphs. 

Let's notice that agents being some rational entities, it is possible to associate them 
a precise notion of state characterized by values of specific vector.  

Geometric State of an Aspectual Agent  

The state of an aspectual agent is the meaningful characters that permit to de-
scribe its current situation at a time and to predict its future behavior. This will 
be a specific vector. 

It is clear that one will always bring back each of these characters to an element of 
R. So, an agent's state will be a point of Rm if there are m characters defining the be-
havioral agent's state [Cardon 1999, 2004]. 

Map of Activity of an Aspectual Organization of Agents [Lesage 2000]  

A map of activity of an organization of agents is a temporal representation of the 
geometrical set of the significant characters of the agent behaviors. This is a dy-
namic geometrical object. 

To use the notion of shape, that is to represent a map of agent activity by geometric 
forms, it will be necessary to first represent each agent by a vector of activity. The 
map of activity of an organization of agents will be then a set of points in the Rm cor-
responding space, according to the m typical characters of each agent's behavior. The  
 

 

Fig. 2. The morphology expressing the aspectual agents organization 
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constitution of such a map is possible because agents are only rational entities. Their 
typical characters are expressed from their structure according to their actions only. 
Using a classic mathematical transformation, we express the form of the agents activi-
ties as a graph, where each node is a group of similar vectors of agents and each link 
is the valuation of the qualified communications between groups of agents [C.f. Fig. 
2]. 

To represent the behavior of a self-adaptive component organization with its geo-
metric aspects, one must define a specific dynamic space, the morphological space 
[Cardon 1999]. The so-called agents of morphology, distinguishing groups and ex-
tracting forms will achieve the assessment of the active shape of agent groups [C.f. 
Fig 3]. 

Finally, another organization of agents, after the aspectual and the one of morphol-
ogy, is going to take in consideration the state of the aspectual organization to achieve 
an analysis of the aspectual agents behavior. It is about representing the sense of the 
activation of the aspectual agent organization with its geometrical characters and 
produced by the agents of morphology. The agents of analysis are going to provide a 
cognitive view of that has been expressed by the geometric and semantics information 
coming from the morphology agents, above the aspectual agent landscape, an inter-
pretation of graphs indeed [C.f. Fig. 3]. 

Rational Functioning of the System  

The system, reduced to the aspectual agents doing the foreseen rational tasks, 
with the agents of morphology expressing the shape of the aspectual activation 
and with the agents of analysis achieving the synthesis of the aspectual agents 
functioning to plan the reactions, will be qualified of rational functioning, that to 
be-to-say under inner-control but without any emotion indeed. 

 

 

Fig. 3. The three rational organizations of a self-adaptive component 

We can precise the notion of self-controlled representation with a specific coarse 
grain component: the adaptive component [C.f. Fig. 3]. This notion is going to permit 
to exceed the strictly rational behavior of the system and to define the emotions. 
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Self-adaptive Component  

A self-adaptive component is an aspectual agent group linked with a morpho-
logical representation and an analysis agent group allowing to describe and to 
interpret its own specific activity, while controlling it in order to make emerge a 
computable oscillator. Such a component is emergent and does not exist at the 
conception level therefore.  

A linked set of self-adaptive components could express, by its functioning and in a 
very dynamic way, the emotional states. 

4.3   Basic Organization of Self-adaptive Components: The Aspectual Agents  

According to the inputs of the system (robot sensors and effectors for example), the 
agent organizations generating behavioral decisions and emotions will be composed 
of self-adaptive components, every one being an organization of aspectual agents 
centered on a symbolic and geometric role bound to a morphological characterization 
and provoking an organizational answer taking into account the information coming 
from its context. The behavior of this set of components will be appreciated in two 
ways:  

• the action of agents on the output of the system (flux, intensity…), what will 
leads to an emotive effect.  

• the shape of the organization, witch will produce an observation of emotion 
like a mental photography.  

We base the architecture of the system on a representation of situations theory, 
where the reactions of the system necessarily pass by the continuous erecting of an 
adapted representation, the current one, that is a computable construct about the sense 
of the action of numerous groups of agents. 

We now specify the different categories of aspectual agents. The self-adaptive 
components are constructed using light software agents. One kind of aspectual agents 
is bound to the outputs of the system (for example the embodiment parts of the robot). 
While preserving the robotic terminology, these agents are of two types:  

• the sensor aspectual agents, SAA: they interpret the information coming 
from the environment, 

• the effectors aspectual agents, EAA: they propose an effective action of the 
output parts. 

Their structure is the one of a classical light agent [Krogh 1995], [Campagne 
2004]. 

The SAA, the Sensors Aspectual Agents  

They are aspectual agents that achieve an automatic interpretation "cognitive and 
variable in amplitude" of this one, for each new information coming from the envi-
ronment in the input buffers. The knowledge module of these agents achieves the 
interpretation. These two modules, module of knowledge and the behavioral one, are 
composed of rules that are, for example, the followings:  
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• if value of such information increases with such contextual characters then to 
position the meaningful variables to such values and to get in such state…  

The EAA, Aspectual Effectors 

The EAA operate on the environment of the system by efficient actions (on the MMI 
or with the body of the robot). These agents are solicited by the aspectual and analysis 
ones and propose actions. For achieved these actions, the EAA must coordinate them 
in a social way (prey - predatory principle). Rules of action of the EAA are multilevel 
and are, for example, the followings:  

• if the state of several solicited aspectual agents is of such category, then to 
make the proposition of such immediate action (with a notion of hierarchy 
and priority)…  

• if the proposition of action is reinforced by some agents of analysis, then to 
act of such manner…  

• if an alarm is triggered then to propose to hire such action with such priority 
and such speed of realization then…  

These aspectual agents must define very local plans: that is the numeric synthesis 
of their past actions, proposed current action, possible values of future actions. Let's 
notice that this notion of plan is strictly local and only defined by the values of char-
acteristic variables, permitting to memorize the details of the local actions. 

4.4   The Structuring Agents and the Sets of Oscillators 

The aspectual agents linked to sensors and effectors are evidently not sufficient to 
represent any emotion. An emotion is an internal phenomenon, in a brain or in a sys-
tem. It is a particular movement of some self-adaptive components whose the general 
shape (the morphology) will be typical of a developed process of emotion. These self-
adaptive components will be made of aspectual agents and their in-line appreciation 
will be a kind of game with their geometric shapes. By game, we hear that the organi-
zation of agents necessarily fears its own activity, prolongs or interrupts it. 

So, we are going to consider another organization of aspectual agents, numerically 
and qualitatively the most important therefore, the structuring agents. They are par-
ticular aspectual agents without any communication with the system inputs or outputs, 
forming some evolutionary groups and finally operating on the EAA and SAA agents 
to hire a type of inner behavior that they will express in own, by their activities. Then, 
these inner agents are going to define very abstract functional groups, to permit the 
emergence of some agent's sets, active or recessive according to certain organizational 
characters, to put into relations some groups rather than others, to organize the activ-
ity of the aspectual SAA and EAA. They plan their functioning by the following  
characters:  

• existence and maintains of cycles in the organization of structuring agents,  
• existences and maintains of typical parts (in the geometrical sense) activated 

after some another one,  
• existence of junction points in the graph of activities of the structuring 

agents,  
• existence of partial order relations…. 
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The structuring agents will form, erecting self-adaptive components, an active or-
ganization whose functioning will be worth for the production of an emotion. They 
don't have any direct relation with sensors and environment and in this way, they can 
only represent some "strictly abstract" conceptual shapes, like into the brain. They are 
going to represent events having a relation with the reality observed by the SAA, but 
in a geometric meaning (the sets of activated agents whose the expressed shape is 
typical). They have to produce some typical shapes by their activity and have to fol-
low information of morphology agents by reinforcement and production of more 
typical activity shapes. They have to produce some conceptual activities, because 
their roles will have the characters of concepts being worth for correspondent charac-
ters of the reality. Mainly, they have to make emergence of sets of computable oscil-
lators. Their activities will be continuously representative of the external phenomena 
given from the numeric information manipulated in the aspectual SAA and EAA. The 
functioning in the system is therefore the following:  

• initially systematic activation of some aspectual agents SAA, EAA, 
• systematic activation of structuring agents, 
• morphological description and analysis of the aspectual, detection of loops 

for self-adaptive component emergence, creation of chains of self-adaptive 
components, 

• backing and typical categorization of activities of the structuring agents 
forming self-adaptive components (choice in the system), emergence of a 
global typical form of activity, 

• link form to form between an internal situation of agent's activity and the ex-
ternal phenomenon expressed (the emotional behavioral reaction) and main-
tain of this correspondence when activities evolve.  

This correspondence form to form means that the external situation (the phenome-
non) is expressed (discerned and represented) by some internal structuring organiza-
tion functioning with a typical geometrical aspect [C.f. Fig 6]. 

 

 

Fig. 4. The five different organizations of agents of the representation system 
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The structuring agents are going to concretely define, by the fact that they speed up 
in a coordinated way, specific activities corresponding to features of a general internal 
representation, a geometric sentence pushed on some characters of the current exter-
nal reality. Thus, a surprise (an emotion of surprise) will see to speed up with strong 
vivacity some very active chains of loops of aspectual agents with spatiality role, if 
the phenomenon creating this effect of surprise is into the spatial domain of percep-
tion. Structuring agents have therefore specific roles to express specific categories 
relative to the different aspects of the phenomena in the environment. 

Structuring agents represent categories that refer to:  

• the space and its different possible description modes (the permanent and 
regular shapes)…  

• the time and its modes (the notion of time that is passing out)…  
• the designation of a well-identified thing (the detachment of something from 

a whole of shapes)…  
• the situation of an object (the appreciation, the utility, the worry…)…  
• the possibility to manage the organization itself (the component elements of 

the proto-self)…  

All these general and abstract characters should be declined into different groups of 
structuring agents that are active according to some cases and where the characters of 
the groups are variable. This process will be activated according to information pro-
vided by the sensor aspectual agents SAA, or from the morphology. 

5   Functioning of the System: The Motivated Pleasure 

The emotional system is built upon the rational system composed in the same way of 
the aspectual, morphological and analysis agents, but while permitting to decide the 
action to undertake, and to appreciate this action in a qualitative way from a precise 
incentive. 

5.1   Emotion  

We are going to define the architecture of a specific organization of structuring agents 
managing the production of emotions like pleasure.  

Artificial emotion 

An artificial emotion will be essentially the rhythm of some self-adaptive compo-
nents functioning in emerging way in the structuring agent organization, func-
tioning by synchronized loops whereas the system undertakes some external 
typical action. In this way, the system adopts a specific in and out behavior. 

To hire an emotional process, that is a particular action of the agent organizations 
and typical movements of the body, it is necessary to leave from a state that is clearly 
a neutral one. We will call "low state" the state without emotive action or achieving 
an automatic one. In this state, some specific aspectual and analysis rational organiza-
tions are operational. 
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Low State  

It is the state where the system is inactive or achieved a preprogrammed auto-
matic reactive action.  

In the low state, the input of information won't trigger anything of emotional and 
will amount the more a reflex action. We have to give the autonomy to organizations 
of structuring agents, into the sense of a general functioning with inner loops. The 
system must adjust itself to consolidate a while its structure: some organizations of 
agents are in progress and will supplant some others according to a rhythm, launching 
some external actions according to a specific fashion. Others organizations will work 
then in background, without orders sent to the EAA, but they will possibly be later in 
an emergent state (phenomenon of domination). The adequacy between the external 
stream of information and the complex activation of structuring agent's organizations 
will allow the emergence of some self-adaptive components. 

5.2   The Characters of the Incentive: From the Signal to the Incentive 

We put the hypothesis that each sensor that is not a strict alarm sensor is, in some 
way, the corresponding of an artificial sense in the system. So we have: 

• sensors of vision, sensors of temperature, sensor to touch or follow-up the 
movements…  

The system fears its environment by different means that we call its "senses". To 
each sense will be associated, whatever it is, a state of activity: 

• active or no active sense (with notion of intensity if the sense is active), 
• active sense in an admissible way (toward the pleasure) or anomalous (to-

ward the pain). 

These sensory characters of the system can be easily represented into the typical 
structuring agents bound to some effectors agent's, the EAA indeed. 

From some signal considered like a starting shape putting in effect the inputs of the 
system, there is generation of an incentive, that is a general tendency to the action 
toward some goal, when a schema of plan of action is defined into the analysis agents 
(global plan with local indicators of sub-plans on different structuring agents), when 
the system can maintain this plan some time without tampering it too much and espe-
cially while valuing it. The incentive is therefore a meaningful modifying activation 
of the current low state with effect in the different organizations of agents hiring to 
lead the system that is the bodily part and the system of representation, toward a typi-
cal behavioral activity aiming some goal. This activity can be "to seize a pen for 
touching it", "to drag quickly on the right of the window"… There is an engagement 
of an effective output activity and engagement to its organizational transposition. This 
signal is going to release:  

• according to the state of the system,  
• according to the characters discerned of the environment,  
• in an irrepressible manner, but no randomly.  
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The signal would be generated by a specific organization of agents having no di-
rect contact with the aspectual agents, but while taking account of the morphologies. 
In all the cases, the signal will be transmitted to structuring and analysis agents to hire 
the system in its whole toward a goal. We will represent the set up of this signal while 
using the fundamental organic tendency paradigm, like an emergence in a specific 
agent organization, taking only its information from the morphology agents [C.f.  
Fig. 6]. The origin of the signal is for us a virtual one. 

Once this signal is activated, the system has to generate a global typical behavior. 
The signal is sent therefore on the organization of analysis, activating a pattern of 
requisite typical behavior. This pattern of behavior, in fact a plan (flight, approach, 
seizure, restraint, gesture of a member…) is managed by the agents of analysis (that is 
in context according to the current possibilities of the system) while taking informa-
tion on the aspectual agents. That pattern leads to the generation of a new specific 
behavior taking into account the represented situation. This plan is initially very few 
precise, but it becomes clearer with its progression, precisely:  

1. the contexts of the past of the organism and histories referring to this case,  
2. the immediate undertaken action, 
3. the evolved possibilities if the plan either succeeds or fails. 

This global plan of action is transmitted to structuring agents and then generates a 
lot of specific plans (all the local parts) for the effectors agents. This generation is 
negotiated quickly between them and corresponds to a summary behavioral schedul-
ing. There are therefore behavioral goals definite in a global manner, with indica-
tions driving the local injunctions (aspectual agents linked to effectors). One will say 
that there is setting up of an incentive: a goal declining into operational sub-goals in 
a particular aspectual agents activity. This incentive will be expressed in the specific 
incentive agent organization and will be a specific form in the morphology [C.f.  
Fig 5]. 

The Artificial Incentive  

The artificial incentive is a global tendency expressed by a specific agent or-
ganization: the agents of incentive from the observation of some characters in 
the aspectual morphology. This tendency leads to a constraint on the aspectual, 
leads to a general planning of the action distributed into different groups of 
structuring agents. This planning brings about some specific plans with strong 
coefficient of intensity into all the aspectual agents. The incentive is represented 
by a form in the morphology, which is the so-called wanted form. 

Agents that generate the incentive, that causes it, are agents of incentive, linked to 
morphology and structuring agents. These agents speed up from a particular recogni-
tion sign in the current morphological organization of the aspectual agents. In return, 
they force some self-adaptive components to drag the system to a type of functioning 
while first soliciting analysis agents. They create a wanted form in the morphology 
the organizations have to reach.  

This organization of incentive agents is always active, with more or less of inten-
sity. It constantly observes the state of the morphology of the aspectual agents. It 
gives out, at the good time, a specific signal launching the process "incentive - satis-
faction – pleasure".  
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It remains to define how the system is continuously maintaining the incentive in 
the time, notably defining a "center of the artificial pleasure". That is the realization of 
the emotion. 

5.3   From the Incentive to the Satisfaction: The Artificial Pleasure Center  

From a signal produced by the organization of the incentive agents, the system gener-
ates an incentive altering the analysis agent organization. That hires the system to-
ward some typical behavior. We have now to define a control system for a very flexi-
ble behavior in while, permitting to adapt this behavior to maintain a general state 
procuring the artificial pleasure. It is not therefore to only reaching a fixed goal in 
optimal time, but to develop a state in the time, in an organizational way, as an artifi-
cial pleasure. Such a state will be, in the system, a self-controlled organizational one, 
that is some synchronized agent organizations functioning with loops and permitting 
them to maintain the system in the line of the committed action. 

Commitment Toward the Satisfaction: The Pleasure  

From a signal generated by the incentive agent organization and indicating an 
opportunity, the system speeds up to reach the satisfaction: it follows a type of 
inner behavior, with a goal fixed by itself, and modify its rhythm of functioning, 
if the goal seems to become closer or not leave. It maintains for a while a behav-
ioral internal typical state: the pleasure state. 

The artificial pleasure will be the state of activity with self-kept functioning for the 
system, where the system is under the control of a specific agent organization, the 
agents of satisfaction [C.f. Fig. 5].  

Artificial Pleasure and Agents of Satisfaction  

A process of artificial pleasure generation is a global in while particular state 
where the activity of agent's organizations are under the control of the satisfaction 
organization. This organization leads all the aspectual agents to function with 
looped process with specific periods. A group of aspectual agents linked to sensors 
and that expresses senses is controlled by the satisfaction agents to the detriment of 
the others. 

 

General Algorithm  

Continuous activation of incentive agents  
Morphological survey of the aspectual agents 
Emergence of an incentive signal into the organization of incentive agents and of 

a form into the aspectual morphology 
Activation of the analysis organization from this signal and the form, and gen-

eration of a behavioral pattern into the analysis agents 

Development of the Incentive  

Generation of a typical behavior (form, goals and sub-goals)  
Injunction of activation to structuring agents  
Corresponding activation of the aspectual agents 
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An agent of satisfaction is an element that has the following characters:  

• It has a classic structure.  
• It takes its information therefore in the organization of incentive and analysis 

agents. Each agent is activated with a specific category of signal and it 
makes choice of an organ category it must commit to activation. So, it acts to 
launch the behavior of some organ having the role of sense generator, or 
group of organs. 

• Its goal is to control the agents of analysis, and then the system in whole, 
while tampering their plans.  

• It has a specific temporal objective that is to maintain the state of the system 
for a while.  

• It is social in this sense that the coalition of satisfaction agents permits a co-
herent and fine control of all the bodily part of the system (otherwise, this 
control would be without coherence).  

Pleasure is about therefore the characterization of the temporal activity develop-
ment of a plan with assessment of two possible futures: a pleasant and the unpleasant 
one. Let's note that the time is here forced by the reality of the functioning of the 
system, the reality of the inputs, that this time is restrains by the physical behavior of 
the system.  

When the satisfaction organization takes the control of the system, there is a strong 
link between the fourth agents organizations: aspectual, morphological, analysis, and 
the organization of satisfaction [C.f. Fig 5]. Agents of analysis and morphology are 
going to inform the organization of satisfaction of the progression of the imposed 
action, if that action is according to a typical shape of the morphology. This one is 
going to maintain it for a while, and then repositions itself, indicating that the quality 
of the satisfaction has changed. Satisfaction agents are going to systematically send 
messages to agents of analysis, indicating them the evolution of the satisfaction state 
and level that is altering the rhythm of the loops. 

6   The Artificial Emotions  

The principle of generation of an emotion is therefore the next one. The input sensors, 
via agents of interface, make to speed up structuring agents that make speed up the 
corresponding morphology agents. The incentive organization generates a specific 
form in the morphology that is to reach: the incentive morphology. The current mor-
phology describing the aspectual activity has to transform itself into the incentive 
morphology. For that, the aspectual agents have to make some specific activity. The 
analysis agents control them in that way. The characters of the incentive and of the 
current morphologies are the determinants for the emotion. If the current morphology 
has a complicated shape, far away from the incentive morphology, the system ex-
presses a state of tension that it is going to try to systematically reduce. This tendency 
to the reduction corresponds precisely to the discharge of energy that evoked S. Freud 
in the antagonistic action of impulses toward states of quietude [Freud 1966].  
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Fig. 5. The computable process of pleasure 

The pleasure is the case where the current morphology reaches slowly but steadily 
the incentive one [C.f. Fig 7 right]. After the activity of the interface agents, the as-
pectual agent organization generates some global activity, a global process geometri-
cally represented by the organization of morphology [C.f. Fig. 5, left]. The incentive 
morphology generates a singular pick that activated some corresponding aspectual 
agents. The current descriptive morphology of the aspectual agents, considered by 
projection in R2, leads to the constitution of a lot of successive picks, from progres-
sive features, and this shape converges toward the pick of the incentive morphology. 
In its looped functioning, agents of analysis are going to reduce the morphology to 
only one prominent shape. There will be reduction of tension and sensation of pleas-
ure, as describes it S. Freud. The right figure 5 exhibits a map of the aspectual activity 
graph developed in OCAML language [Campagne 2004]. 

7   Conclusion  

The emergence of emotions in an data processing system, or in a robot, has been pre-
sented as the stabilization in a while of activities in a complex multiagent system, in 
an organizational and constructivist way. This emergence, represented by functioning 
with periodic loops of activities, is the global state of a set of agent organizations. To 
achieve this type of functioning, some agents, the agents of morphology, represent 
behaviors of aspectual agents that themselves represents the minimal elements of 
significance. The fact that the activity of a system is endowed of emotions founds 
finally on a strong coupling process between the computations that organize it and the 
representation of computations that permits the own-control of group of agents.  
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The importance of such a process of coupling, binding the parts to the whole, bind-
ing groups of agents to their significance represented by agents of morphology, is 
strong. It is the fundamental principle of the functioning of systems that we called 
self-adaptive, and are to day the alone able to self-control complex systems. It gener-
alizes the notion of feedback and systemic loop and go to the realizations of autono-
mous system essentially producing states by emergence.  

A system generating emotions while using a bodily substratum, while proceeding 
to an organizational emergence thus has, according to us, a complex structure at the 
level of organization. But this organization can also produce a representation of itself, 
of its own morphology leading to the notion of "its own body". System can use this 
morphology as an engagement to act since at a time. Using geometric and cognitive 
aspects, that is the sign of the organizational semiotics summarizing at the same time 
the process of reorganization and its result. And the result of this constructive self-
observation can be delivered by the system to all the observers. In this sense, such a 
system can express itself rather than only display values merely. The difference then, 
brings in such a system that expresses itself subjectively according to its intentions 
and another one that would proceed to displays complicated information very well 
adapted for sound the user, is large and makes a kind of rupture in the field, very vast, 
of the present computer science. 
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Abstract. In this paper, we present a new and novel way of maintaining the 
consistency in an agent's knowledge base relying on the notion of Truth 
Maintenance Systems. In our work, we present a new parameter that helps in 
determining which propositions or assertions to retract if a contradiction ensues. 
Our new soundness parameter will be very easy to compute, at the same time, it 
is very effective. 

1   Introduction 

When considering the knowledge base properties of an agent, we may have in mind 
completeness, efficiency, consistency, among many other properties [1]. Herein, we 
will limit our attention to consistency. In this paper, we will concentrate on 
maintaining the consistency within an agent knowledge base. Particularly, we will 
address local knowledge base consistency in an agent, overlooking the global 
consistency temporarily. So, when we posit that an agent is consistent, we mean that it 
is consistent, regardless of the system as a whole. Moreover, if we have a group of 
agents, all the agents may be consistent locally. However, this does not provide the 
global consistency. In a system of agents, we can anticipate widely diversified 
information. For an agent A, a proposition S will be valid according to her 
knowledge, but for another agent B in the same group or system, proposition S may 
not be valid. On the contrary, the negation of S (not S) may be valid for the agent B, 
leading to an inconsistent system by having a contradiction (i.e., a proposition and its 
negation). In our work, we are using propositions and assertions [2] to equally mean 
the same. Hence, both concepts are used interchangeably in this paper. However, we 
concentrate our current work at the individual agent level, where a proposition and its 
negation coexist in the same agent, causing the agent to be inconsistent. 

Section 2 emphasizes the motivation of this paper by elaborating on our big 
problem. Section 3 introduces some background material about Truth Maintenance 
Systems, and draws on some examples on how TMSs work. Section 4 gives a 
specification of our model. Section 5 introduces and illustrates our new novel 
soundness parameter. Section 6 frames the components of our model. Section 7 
displays a scenario of a conflict that may arise in the system, and how the system can 
resolve this conflict.  Section 8 draws conclusions and shows some future research 
directions. 
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2   Motivation 

In our current research, we are concentrating on finding ways to enhance trust among 
a group of agents, and assure the information being spread among the interacting 
agents. We, combining the notion of trust with the notion of Truth Maintenance 
System, obtain new and promising results. While studying the TMS concepts, we 
found that the proposed way for propositions' retraction presented by Doyle and 
others [8] does not meet our requirements. It will be hard to involve the Retraction 
process in our work. So, we propose a new and a novel parameter that is very easy to 
calculate, give good results, and fits our requirements.  In this process, we divided our 
work into several steps. The first step is to maintain the consistency within each 
agent. The details of this work will be discussed in this paper. 

In the future steps, we will uphold the consistency among the agents by enforcing 
the global consistency. We will also combine Trust with Truth Maintenance Systems 
to assure the information among the agents and to enhance the trust level of agents 
using our novel parameter.  

In a group of interacting agents, we are working in making their interaction very 
trusted. So, we enforce the global consistency among the group of agents. Such 
consistency makes assuring the information much easier. In working towards 
achieving the global consistency, we found that it is much easier and more effective if 
we maintain each agent consistent at all times. This will take care of the local 
consistency in each agent. We achieve this by eliminating any contradiction that may 
arise by retracting some of the assertions/propositions that cause this contradiction. 
For this end, we find a new and easier way for overcoming any arising contradiction 
by presenting a new and novel parameter which guards the process of retraction. In 
what follows, we discuss this in more details. 

The following example will motivate and illustrate our work: 

Consider the following group of interacting agents: 

Figure 1 shows a group of interacting agents. Each agent has a local TMS that takes 
care of any contradiction that may arise. Also, a global TMS exists which takes care 
of any contradiction that may arise among the interacting agents. The Global TMS 
guarantees global consistency. To explicate, it is almost impossible for interacting 
agents not to have some contradiction, because each agent has her own vision of 
information. The difference in opinions always leads to some kind of contradictions.  
In addition to taking care of global consistency, the Global TMS takes care of 
assigning reputation values for agents. If a contradiction happens in an agent, it will 
be detected by her local TMS which in turn, will notify the Global TMS. The Global 
TMS will track the chain of transactions till she gets to the source of the 
contradiction. It will retract some of the propositions, and send an update message to 
the local TMS, ordering her to both update her Database with the new action, and the 
trust value. The agent's local TMS will decrease the agent's trust value with the agent 
that caused the contradiction.  

If agent A has a trust value with agent B, and the trust value becomes less than the 
threshold value, then agent A will consider agent B as a not-trusted agent, and she 
will not accept any new propositions from that agent.  
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Fig. 1. A group of interacting agents 

3   Truth Maintenance Systems 

TMSs (Truth Maintenance Systems), also called Reason Maintenance Systems are 
one of the common tracking mechanisms for achieving knowledge base integrity [1]. 
TMSs support default reasoning and provide justification for conclusions. One of 
their basic uses is recognizing inconsistencies. Moreover, TMSs can remember  
the previously computed derivations. They also support dependency-directed 
backtracking [3].  There are different types of TMSs, namely Justification Based 
Truth Maintenance Systems, Assumption Based Truth Maintenance Systems, Logical 
Based Truth Maintenance Systems, etc. Henceforth, we employed a kind of 
justification based TMS in our work to meet our system's requirements. A 
justification TMS, in general, is a TMS where each proposition or assertion in it has a 
justification, and is labeled as IN (believed) or else, OUT (disbelieved) [1], meaning 
that it is not justified, or it is invalid. TMSs can be used for achieving the knowledge 
base integrity in a single agent system and can be used for multiagent system 
negotiations as well. 

The following example shows how the TMS works. The example is adapted from 
the Service-Oriented Computing Semantics, Processes, Agents [9]. 
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   Client 
f3: afford(Xcorp)  INTERNAL 
r3: Infer buy(?X) from query(Broker recommend(?X)) and     afford(?X)  

INTERNAL 

Broker 
f1: afford(Xcorp)  OUT 
f2: cash-rich(Xcorp)  INTERNAL 
r1: Infer recommend(?X) from takeover-bid(?X)  INTERNAL 
r1: Infer takeover-bid(?X) from cash-rich(?X)  INTERNAL 

Client 
f3: afford(Xcorp)  INTERNAL 
r3: Infer buy(?X) from query (Broker recommend(?X)) and afford(?X)   

INTERNAL 

                   Broker 
f3: afford(Xcorp)  INTERNAL 
r3: Infer buy(?X) from query (Broker recommend(?X)) and afford(?X)   

INTERNAL 

      Client    
f3: afford(Xcorp)  INTERNAL 
r3: Infer buy(?X) from query(Broker recommend(?X)) and 
    afford(?X)  INTERNAL 
f4: recommend(Xcorp)  EXTERNAL 
 Shared with: Broker;  Justification: ( ) 
f5: buy(Xcorp)  INTERNAL 
 Justification: (f3 f4 r3)

Broker 
f1: afford(Xcorp)  OUT 
f2: cash-rich(Xcorp)  INTERNAL 
r1: Infer recommend(?X) from takeover-bid(?X)  INTERNAL 
r1: Infer takeover-bid(?X) from cash-rich(?X)  INTERNAL 
f3: recommend(Xcorp)  INTERNAL 
 Shared with: Client;  Justification: (f2 r1 r2) 
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4   Specifications of Our Model 

In our system, we have two types of propositions: 

Premises: these are the propositions sent to the agent by other agents [4]. Once an 
agent accepts a premise from another agent, she will always consider it to be true. 
Neither does the agent have access nor does it need justifications for the soundness of 
this premise from the sending agent once the premise is accepted by her.  

Client 
f3: afford(Xcorp)  INTERNAL 
r3: Infer buy(?X) from query(Broker recommend(?X)) and 
    afford(?X)  INTERNAL 
f4: recommend(Xcorp)  EXTERNAL 
 Shared with: Broker;  Justification: ( ) 
f5: buy(Xcorp)  INTERNAL 
 Justification: (f3 f4 r3) 

Broker 
f1: afford(Xcorp)  OUT 
f2: cash-rich(Xcorp)  INTERNAL --> OUT 
r1: Infer recommend(?X) from takeover-bid(?X)  INTERNAL 
r1: Infer takeover-bid(?X) from cash-rich(?X)  INTERNAL 
f3: recommend(Xcorp)  INTERNAL --> OUT 
 Shared with: Client;  Justification: (f2 r1 r2) 

Client 
f3: afford(Xcorp)  INTERNAL 
r3: Infer buy(?X) from query(Broker recommend(?X)) and 
    afford(?X)  INTERNAL 
f4: recommend(Xcorp)  OUT 
 Shared with: Broker;  Justification: ( ) 
f5: buy(Xcorp)  OUT 
 Justification: (f3 f4 r3) 
 

Broker 
f1: afford(Xcorp)  OUT 
f2: cash-rich(Xcorp) OUT 
r1: Infer recommend(?X) from takeover-bid(?X)  INTERNAL 
r1: Infer takeover-bid(?X) from cash-rich(?X)  INTERNAL 
f3: recommend(Xcorp) OUT 
 Shared with: Client;  Justification: (f2 r1 r2) 
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Derived Propositions or just (Propositions): The derived propositions are the ones that 
are inferred or constructed in the agent’s database based on the Premises she has and 
her previous knowledge [4]. 

We will have in our system a new type of information which will play a principal 
and key role in all discussions. This information will be saved in the agent's Database, 
and it will be considered part of the agent's previous knowledge. A set of inference 
rules will be hard coded and saved in the soundness Handler component. To put it 
differently we will take each inference rule such as A + B  C and hardcode this in 
the agent's database. The following table illustrates this process: 

 
set op1 = operation 
set operator1 = A 
set operator2 = B 
set operator3 = C 
if ( op1 eq? +)then 
{ 
   operaotr1   operator3 ( is true) 

   operator2  operator3 (is true) 
 } 
 else if(op1 eq? *) 
 { 
     operaotr1   operator3 ( is false) 
     operaotr2   operator3 ( is false) 
  } 

 
All future judgment for propositions will depend on this notion and the notion of 

justification. According to the inference rules, if a proposition is believed, then it 
means that there is a set of other propositions justifying it. This new justified 
proposition will be added to the system and will be called the descendent of the 
justifier's proposition. The justifying propositions are called the ancestors of this 
proposition. In the following discussion, we will shed more light and give more 
details about this notion.  

5   Soundness Parameter 

We posit consider that a contradiction will not be forecasted until it occurs. Upon 
assertion of a proposition, it is justified. After a while, there might exist a proposition 
with its negation in the database of an agent, leading to a contradiction. Our focus is 
to find ways that keep every agent perpetually consistent by not permitting any 
proposition and its negation to exist simultaneously. For that, we define a new 
soundness parameter, which allows us to resolve arising conflicts. This new 
soundness parameter is used to check the soundness of the derived propositions in the 
agent’s database. We will rely on our new parameter and whether the proposition has 
been justified or not to resolve any conflict or contradiction.  
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By using our soundness parameter, and whether a proposition is justified or not, we 
will have a strong judgment in retracting any of the propositions stored in the system, 
lowering the chance of retracting any wrong propositions.  

Soundness: is a parameter that quantifies the validity of each proposition in the agent 
knowledgebase. Its value is in the interval [0, 1].  

This is different from the traditional labeling algorithm [6], which is used to retract 
some of the propositions in the agent to remove the conflict, and it is also different 
from the set of retraction steps proposed by John Doyle [7]. Instead, our parameter 
relies on the degree of support. If a proposition is found to have high support then it 
will not be retracted, but if it is found to have low support it may be retracted. We 
have developed our model and assigned a value for our soundness parameter for each 
proposition based on our model. After applying our parameter and our criteria of 
retraction, the conflict will be removed with a very low likelihood of choosing a 
wrong proposition. 

For a proposition P, we assign a soundness value based on both the premises in the 
system, and the previous knowledge of the agent. This value can be one of three 
values: 

- < 0.5 which means that its soundness is low/(very low), and hence, this 
preposition may be retracted. 

- > 0.5 which means that its soundness is high/(very high), and hence, this 
preposition will not be retracted. 

- = 0.5 which means that its soundness is neither high nor low, and hence, this 
proposition may or may not be retracted, depending on the situation. So, 
more knowledge is needed. 

Before explaining how we got these values, it is important to show how the 
judgment is formulated. Before checking for the soundness value of a proposition, a 
check is performed to see whether the TMS has been able to justify this proposition or 
not.  

After this check, the soundness value will be computed. If the proposition can be 
justified, then we can expect a high value of soundness, but this may not be the case.  

If the proposition cannot be justified, then there are two situations to be considered. 
The first one is when the proposition cannot be justified because it is invalid; the other 
is when the proposition cannot be justified because there is no enough knowledge 
about this proposition, nor is there any evidence that this proposition is invalid.   

The following is a description of the way the soundness parameter values are 
achieved. In order to understand the way the soundness values have been computed, 
we will consider the following example: 

Suppose we have the following Premises in Agent’s A Database: 

 A + B  C                                                           (1) 

 D * E  F                                                           (2) 

If the following proposition is derived: 

 A  C                                                                (3) 
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Then from (1) and the agent's previous knowledge of inference rules, this is true and, 
thus, the proposition will be assigned a high soundness value, like   soundness(P3) = 
0.9. For this proposition we can expect that it has been justified by the TMS. 
If the following proposition is derived: 

D  F                                                                   (4) 

Then from (2) the previous knowledge of inference rules, this is invalid and hence a 
low value will be assigned to the soundness of this proposition, like soundness(P4) = 
0.3. Similarly, for this proposition, since we know it is invalid, we can expect that this 
proposition has not been justified since it is not a valid proposition.  

We may have a different situation where no previous knowledge is known about 
this proposition; the following proposition is a case in point: 

A  G                                                                  (5) 

Here, no knowledge can be used to justify this proposition. For this kind of 
propositions, our system, particularly the Soundness handler (discussed below), will 
give a value of 0.5 soundness(P5) = 0.5 for the soundness parameter, meaning that it 
is unknown. We will call this kind of assertions Pending. For this proposition, we can 
expect that this proposition has not been justified, not because it is invalid, but mainly 
because no enough knowledge is available to judge this assertion. In the following, 
further discussion for each of the above cases will be examined.  

6   Components of Our Model 

Figure 2 shows a schematic diagram of the architecture of our model: 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2. Schematic outline of our model 
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We have the following components: 

Premises/Assumptions: These are the propositions that are sent from other agents. In 
this model, we consider any proposition received from other agents as a premise, and 
therefore, it is true at all times, and does not need justification. 

Inference Engine: This component creates new propositions. The creation of new 
propositions will depend on the agent's previous knowledge and the set of premises. 
However, some of the new created propositions may not depend on the previous 
knowledge of the agent. This does not necessarily mean that the created proposition 
will be true or valid. At this stage, the agent has no guarantee of soundness or validity 
for any proposition. Some of the propositions/assertions may violate other 
propositions that exist in the agent's database. There are many reasons for this. One 
reason may be due to the fact that new propositions fit the requirement of the current 
time and state, and the old ones may be out of date at this point. It is also axiomatic 
that new requirements arise as time progresses. Moreover, the premises are 
considered as eternally true propositions and they do not need justifications. These 
premises come from different sources or agents, and since the new derived 
propositions partially depend on them, some contradictions may occur in these 
assertions or propositions in the agent due to the disparity among different sources of 
the premises.  

TMS: The TMS is the central component of our model. It has access to all 
propositions and premises. It is the component in which the propositions are justified 
and then labeled as justified, meaning that they are justified or believed; or not-
justified, meaning that they are disbelieved. When a new proposition is created, the 
TMS will work to justify this proposition by relying on its previous knowledge and 
the set of premises the agent has. It will also control the system by detecting any 
contradiction that may take place. Once a contradiction happens, it tries to resolve this 
contradiction by retracting some of the propositions, relying on the fact whether the 
proposition is justified or not, and on the soundness parameter to be assigned to each 
proposition. In the system, every proposition and all its descendents are maintained in 
the agent's database. Therefore, if at any time, a contradiction happens, the system 
will be able to keep track of the propositions, and follow the chain of propositions or 
assertions from the current proposition, going back to its ancestor until getting to the 
set of premises. By this, the set of propositions that need to be retracted will be 
specified. The retraction process will be performed using Dependency- Directed 
Backtracking [2].    

Soundness Handler: This is a novel component where each proposition receives its 
soundness value. A soundness value will be any value between 0 and 1 inclusive. A 
proposition which is found to be valid will be assigned a soundness value of more 
than 0.5, and will be labeled as IN. By the same token, any proposition which is found 
to be invalid will be assigned a soundness value of less than 0.5, and then will be 
labeled as OUT.  

However, if a TMS fails to judge whether the proposition is valid or invalid 
because of not having enough information about the proposition, this proposition will 
be assigned a soundness value of 0.5, and will be labeled as pending. The pending 
proposition means that it may be relabeled later as either IN or OUT, when new 
information or evidence of validity or invalidity is obtained. If new evidence appears 
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to support this proposition, this proposition will be relabeled as IN. If any new created 
proposition depends on one of the pending propositions as its justification, the 
pending proposition or assertion will also be relabeled as IN. The new proposition 
will be the descendent of the relabeled proposition.   However, if new evidence 
appears to show that some pending proposition is invalid, the pending 
assertion/proposition will be relabeled as OUT, and its soundness value will be 
lowered by a value of 0.1, making its soundness value less than 0.5. 

7   Conflict Management, a Scenario 

Most Truth Maintenance Systems have some way of detecting a contradiction when 
happens. This can be done by adding a special proposition symbol called 
contradiction. If the truth maintenance system is able to detect a contradiction then 
the contradiction proposition will return yes [3]. 

But how can this work in resolving any contradiction? 
Suppose we have the following set of inferences: 

     P1  P2  P3                                                   (1) 

And           q1  q2  q3                                                   (2) 

And suppose the following soundness values 0.8, 0.5, 0.3 are assigned to each 
proposition of P1, P2, and P3, respectively.  And the    following values 0.7, 0.6, 0.9 
for q1, q2, and q3, respectively. And suppose that P3 has not been justified and q3 has 
been justified. 

Suppose we have the situation where P3 = ~q3 which causes a contradiction in the 
system. Then based in the soundness values, P3 will be retracted because it has a 
soundness value less than 0.5 which is also less than q3's value and it is not justified, 
leading to the removal of the conflict from the system.  

Continuing with the previous example, consider the following situations: 

– If soundness(q1) > 0.5 and soundness (p1) < 0.5 then retract P1 given that q1 
has been justified and p1 has not been justified. 

– If soundness (q1) > 0.5 and soundness (p1) = 0.5 then retract P1 
– If soundness (q1) > 0.5 and soundness (p1) > 0.5 then it is not enough to 

check which one is greater than the other because it is very difficult to retract 
both of them. Also, both propositions have been justified and labeled as IN. 
So, this situation needs further discussion 

–  If soundness (q1) < 0.5 and soundness (p1) < 0.5 we can retract any of these 
two proposition, but for more accuracy, more discussion is needed to make 
the judgment which proposition to retract.   

Consider the following situation where soundness (q1) > 0.5 and soundness (p1) > 
0.5, the following solutions will be considered: 

– Assign a timestamp for each proposition at the moment this proposition 
is inferred or created. For the above situation, the timestamp for each 
proposition is checked. The proposition with the older timestamp will be 
retracted. Sometimes the newest proposition is considered the freshest 
one and, hence, has a better chance to be the most correct one. But this 
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is not often the case. So, more discussion is needed to find a better 
solution.  

-  Compute the soundness average starting from the last proposition P3 going 
back to the first premise that participates in constructing this 
proposition. So: 

-  Avg(soundness (Pi)) =  Pi / n  
-  Avg(soundness (qi)) =  qi / n 
-  Compare the two averages and retract the proposition with     
 the lowest average. 

Relying on the average may not always give us the correct solution, but, on 
average, will give the best solution. 

The same solution methods of assigning timestamps and computing the average are 
applied in the case that the situation where soundness (q1) <0.5 and soundness(p1) < 
0.5 exists. 

8   Conclusions and Future Work 

In this work, we studied Truth Maintenance Systems. We introduced salient 
components of a TMS and then we introduced a new soundness parameter. By 
combining the TMS with our new soundness parameter, we provided a novel and 
resilient conflict management scheme. Soundness Parameter is used to help in 
deciding which propositions/assertions to retract if a contradiction occurs. These help 
the TMSs in reducing the chance of retracting wrong propositions, lowering the 
chance of making wrong judgments and, at the same time, enhance the correctness of 
the function of the Truth Maintenance System. 

For further future work, we will be working on enhancing trust among the 
interacting agents, and assure the information being spread among the interacting 
agents. This process will be achieved by combining the notion of Truth Maintenance 
System with the notion of trust. We will use the TMS concepts as the driving way for 
achieving our goals. The TMS will guarantee the consistency of all interacting agents 
as well as the global consistency. Once this is achieved, the trust management scheme 
can be applied, leading to ways that enhance trust and assure the information. 

References 

1. M. Huhns and D. Bridgeland: Multiagent Truth Maintenance. IEEE Transactions on 
Systems, Man, and Cybernetics, Vol. 21, No. 6, Nov/Dec 1991. 

2. Stuart C. Shapiro: Belief Revision and Truth Maintenance Systems: an Overview and a 
Proposal. Technical Report 98-10, Department of Computer Science and Engineering, 
University at Buffalo, Buffalo, NY, December 1998. 

3. Kenneth D. Forbus and Johan de Kleer: Building Problem Solvers, MIT Press, 1993 
4. M. Barbuceanu, M.S. Fox: The Information Agent: An Infrastructure Agent Supporting 

Collaborative Enterprise Architectures, Proceedings of 3-rd Workshop on Enabling 
Technologies, Infrastructure for Collaborative Enterprises, Morgantown WV, IEEE 
Computer Society Press, 1994. 

5. David A. McAllester: Truth Maintenance.AAAI-90, pp. 1109-1116 



64 Q. Althebyan and H. Hexmoor 

6. J. Kleer: A general labeling algorithm for assumption-based truth maintenance, AAAI-88, 
pp. 188-192, 1988. 

7. J. Doyle: Truth maintenance systems for problem solving. Fifth International Joint 
Conference on Artificial Intelligence, Cambridge, Massachusetts, 1977. 

8. J. Doyle, Reason maintenance and belief revision: Foundations versus coherence theories, 
in: P. Ggrdenfors (ed.), Belief Revision, Cambridge University Press, (1992) 29-51. 

9. Munindar P. Singh, Michale N Huns, Service-Oriented Computing Semantics, Processes, 
Agents. 



 

M.G. Hinchey et al. (Eds.): WRAC 2005, LNAI 3825, pp. 65 – 73, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

Mind Out of Programmable Matter: Exploring Unified 
Models of Emergent Autonomy  

M. Randles, A. Taleb-Bendiab, and P. Miseldine 

School of Computing and Mathematical Science, Liverpool John Moores University, 
Byrom St. Liverpool, L3 3AF, UK 

{cmsmrand,a.talebbendiab,cmppmise}@livjm.ac.uk 

Abstract. This article advocates the need for a radical rethink of software agent 
technology by investigating the mechanisms through which knowledge, 
deliberation, action and control interact to form truly intelligent autonomous 
agents, be they deliberative, intentional or purely reactive automata/ 
particles/actors. Using sound logical formal modelling techniques, this work 
attempts to propose a unified model of multi-agency, which integrates and 
consolidates various proposed software agent models including; deliberative, 
cognitive, collectivist and individualist agent perspectives. In particular, the 
paper focuses on the formal semantics of model-based and emergent regulatory 
structure of autonomic self-regenerative systems, agents or particles (swarm 
intelligence). In addition, the paper uses our new scripting language – Neptune 
and associated development environment, which transforms formal require-
ments models of a given agency to executable code. 

1   Introduction: The Current Situation 

Over the last 3-4 decades, many noteworthy advances have been made extending our 
understanding and application of Distributed Artificial Intelligence (DAI) to develop 
models of reactive, proactive, deliberative and/or emotional agents. Many AI systems 
have been produced that perform well within the domain they have been designed for, 
“yet they could not learn concepts that most children know by the time they are three 
years old.”[1]. It is the aim of AI research to make computer systems perform 
“intelligent” tasks to make life easier for humans. This may be in the realm of 
pervasive computing [2], hidden in the users’ environment, or in autonomic 
computing [3], seeking to alleviate the burden of system management. In either case it 
is very useful to conceive of the tasks as being carried out by agents, which are 
allowed the freedoms to be reactive, proactive and deliberative [4] as a generic 
feature, rather than in any domain specific way. In the future it may be possible to 
provide a computational framework where some conscious intelligence emerges as a 
feature of a learning system. Unfortunately AI has suffered from grand, unfulfilled 
promises and unsubstantiated claims. These have mostly arisen from separate isolated 
areas of research that seldom interact with each other.  At the most fundamental level 
there is a divergence of method between the top-down, centralised management 
approach of policy-based systems, for instance, and the bottom-up devolved control 
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models, capable of exhibiting self-organisation. At a more involved level various 
models are used to imbue agents with intelligent-like behaviour. Researchers work on 
producing Artificial Immune Systems (AIS) [5], Autonomic Systems [3], Sensor 
Networks [6] and many other features, of a biological entity, which can be seen as 
possessing intelligent responses to stimuli, whether through reaction, anticipation or 
deliberation.  These can all be realised to some extent using agent technology, in 
particular autonomous agent methods, but they are developed separately with no 
overall model of coordination. This is, in part, due to the huge variety of 
environmental information and potential events that can occur. A pre-defined model 
cannot possibly capture the requisite system varieties. Another factor is the replication 
of intelligent like behaviour by mimicking biological systems cannot in itself produce 
a consciousness capable of true intelligence [7].  Rather to produce anything 
resembling a conscious intelligence requires a system to evolve to a point where truly 
intelligent behaviour emerges. That is conscious intelligence cannot be programmed 
from the top-down but might emerge from the bottom-up interactions within a 
suitably created framework.  A collective of self-regenerative and self-adaptive agents 
can provide just such a framework with simple specified notions of a collective 
integrity to define federation membership and the interactions between members. 
Additionally the use of concepts such as diversity, cognitive immunity, scaleable 
redundancy and threat reasoning, to change and adapt to circumstances in response to 
the variety of external or system stimuli, can be used to handle the complex variety of 
environmental data and exogenous actions. 

2   Artificially Intelligent Agents 

The exhibiting of truly intelligent behaviour requires a system to have something akin 
to a consciousness. Dreyfus [7] argues that it is impossible to create an artificial mind. 
Any attempt to program a fully-formed intelligence inevitably encounters many 
“conceptual inconsistencies.” However this does not rule out the provision of a 
system framework where conscious intelligence may emerge over time. In a similar 
way children only appear to exhibit responses to stimuli at birth. Intelligent behaviour 
emerges as the child’s mind learns and develops.  

A system framework needs to be established that handles the complex and 
competing demands of environmental and social interaction and allows the emergence 
of notions that may lead to a collective, acting as a single entity, showing truly 
intelligent behaviour. 

2.1   Architecture for Intelligence 

To model the complex structure of an intelligent agent a blueprint can be applied to 
model the system as a single agent with embedded subagents conforming to the same 
blueprint, in a similar way to humans comprising of many interacting lower level 
systems [8]. In turn these subagents contain their own embedded subagents giving a 
fractal like structure to model the system complexity. This has been represented in the 
Viable Intelligent Agent Architecture (VIA-A) architecture [9], which is based on an 
extension of the well-established cybernetics representation the Viable System Model 
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(VSM) [10] combined with elements of the IRMA [11] model. The model identifies 
five subsystems within a running system: The effectors (S1), coordination (S2), 
management (S3), an audit component (S3*), deliberation on future scenarios (S4) and 
system identity (S5). Each of these systems also embeds its own copy of the S1-S5 
structure to any level required. Also, alternatively to separately developed, single 
concept agent software systems, human agents function as a complex, yet 
coordinating, hybrid of all sorts of systems. There is an autonomic system that self-
regulates the body; there are the five senses that provide environmental input and so 
on. But these do not act in isolation but overlap and coordinate in a complex way to 
deliver the complete autonomously acting system. In a similar way a computer system 
based on the VIA-A design ought to be viewed as a holistic entity where the various 
systems of agents and methods of control interact and no one paradigm is used to 
enforce a total modelling methodology throughout the blueprint or at any level of the 
subsystem. The overall model ought to include both a top down normative intentional 
approach to deliberation and a bottom up distributed control mechanism with methods 
such as Chance Discovery, Novelty Detection or Danger Theory [12,13] used to 
detect emergence via suitable partial observation conditions through which a 
conscious intelligence may result. 

2.2   The Emergence of Intelligence 

A framework, as described above, delivers a number of vital prerequisites for the 
emergence of intelligent behaviour. 

• The system has access to real world perceptions and information. Exposure to 
the chaotic, complex nature of the world emphasises the necessity of 
developing a sophisticated method of attenuating data and amplifying actions 
in the world. Such a method would be conscious intelligence. The framework 
as described relies on subsystems interacting in suitable ways with the world. 
S1 systems rely on environmental triggers for some actions whilst others result 
from environmental interactions propagated down from higher S-systems. 

• The system is able to reason and has the capability to act on this reasoning. 
That is the system is able to act on the world and has reasons for this action. A 
system that could only absorb information but not act on it would not develop 
consciousness. Conversely a system that didn’t need environmental interaction 
could not develop any intelligence to exist in the world.  

• The system has the capacity for learning. It is has the ability to improve itself 
through feedback and sensing systems. This however is radically different to 
how human learning takes place. The emergence of a conscious intelligence 
allows the forming of casual relationships. At present computer memory 
functions quite differently to human memory. A computer memory holds all 
information in perfect detail and is thus flooded with many insignificant 
details. The emergent conscious memory would be able to hold fuzzy 
memories capable of assembling necessary relationships as necessary, 
allowing much faster responses. 

• The system is able to propagate itself. Self-regeneration is available to enhance 
the viability of the system. It is likely that as consciousness emerged such 
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methods would evolve to be a less mechanistic and artificial. An empathy and 
social ability would follow as truly intelligent behaviour.  

• The system displays all the facets of complexity mathematically necessary for 
emergence to occur [14]. That is the system comprises of mutually influencing 
components, different system components enhance other components, the 
system takes from the world dissipating the resulting increase in entropy back 
into the environment and the components are subject to random world events. 

Thus the next section proposes a hybrid model that stresses the framework where a 
central module has an evaluating role to proscribe unsafe or detrimental behaviour. 
Importantly however there is also the specification of low level interactions between 
agents that can coalesce in emergent structures that collectively exhibit intelligence.    

3   A Hybrid Agent Design: Top Down Versus Bottom Up 

A blueprint, such as the VIA-A architecture, provides the requisite means of 
reasoning about complexity in the system. Additionally intelligence has a chance to 
emerge from the system. It is proposed to model the various systems as hybrid 
centralised/decentralised control agents. This is achieved through the use of a 
centralised deliberative module, acting as an observer, with control abstracted out 
through environmental semiotics (Stigmergy [15]) and self-organisation through the 
emerging swarm intelligence. By studying such models, self-organisation of computer 
systems can be arranged, where centralised governance is replaced with control 
distributed across all the participating agents with the possibility of emergent 
intelligence. Such systems are better modelled by a bottom-up approach where the 
basic agents and their interactions in the system, and the environment, are defined. In 
this way a federated intelligent behaviour is not prescribed but rather emerges from 
the system. So although, as a software entity, the system controller is still extant, 
acting as a top down observer, the intelligence is actually abstracted by distributed 
knowledge. The observer views and appreciates emerging patterns of organised 
behaviour, unknown to the low level collective participants. In this way the system 
control is divested from a central controller to the active participants within the 
process. This leaves the central controller with a less complex (easier implemented) 
monitoring observer’s role in the system, yet retaining deliberative capabilities based 
on its normative state. 

Consciousness represents a way to organise and use information that can emerge as 
a collective facet of agent federations. The central observer acts as a controlling 
influence on the intelligence that can emerge from bottom-up interactions in the agent 
system. Searle states that “consciousness serves to organise a set of relationships 
between the organism and both its environment and its own states” [16]. Thus 
consciousness represents an awareness of self existence and the world around, with 
the ability to react in a consistent interested manner to it.  

Obviously, at present, there is no conscious intelligence in computer systems. 
However the specification of interaction frameworks, where very large numbers of 
simple agents can form teams, collectives or swarms may approach a conscious 
entity. The mass flow of information through the federation and environment, may 
give intelligence that is not attainable through rudimentary programming methods.  
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4   Formalising Knowledge and Control 

In order to provide the formalism that allows analyses of the mechanisms by which 
intelligence may emerge it is necessary to consider the emergent nature of mass 
swarm-like behaviour. The detection of novelty and emergent behaviour is very 
difficult. What is sought is a theoretical and implementation method for autonomous 
software agents to sense, reason and act in transitional, only partially observable, non-
predictable environments where the local interactions of the participants abstract out 
the need for centralised control and exhibit intelligence. This leaves only detection to 
promote safe behaviour and proscribe undesirable emerging properties as a central 
(observer) role. Thus agents’ beliefs and the ensuing actions prompted by these 
beliefs are paramount. These beliefs are best represented as logical sentences [17] that 
condition behaviour. This behaviour affects other members of the collective and in 
such a way it is hoped to provide a formal and computational account of deliberation 
leading to action in a swarm type system (Swarm Calculus). Thus there is an 
emphasis on beliefs and how they condition individual behaviour, to influence group 
behaviour. In this way intelligence emerging from the system is conditioned by the 
beliefs inherent in the mass system as held by the vast collection of participating 
agents. This, in turn, means that logical consequences of emergent behaviour, whether 
inferred or detected, can be ascertained, evaluated and utilised within the system. As 
an example, using dynamic logic with the usual modal operators  meaning “it is 
necessary that” and  meaning “it is possible that”, consider a system where the 
number of agents, in a team, needs to be maintained above a certain number N. A 
mutual goal, p, for a team (T) can be stated as: 

G(T,p)⇔B(T,¬p)∧G(T,p)∧[UNTIL[B(T,p)∨B(T, ¬p)] 

                                                                       LTG(T,p) 

where B is the modal belief operator [18] and LTG is a lesser team goal that the team 
mutually believes that all the members have a team commitment to p 

So we have  

 G(T,numberofmembers(T)>=N) 

From this we can infer, as a logical consequence, that team members as individuals 
have a commitment to maintain the number of colleagues above a specified level so 
that when one believes that the number of fellow members is less than required and 
believes that this is not mutually believed by the team and believes it is not impossible 
to establish mutual belief for the team then it has an individual commitment to bring 
about this mutual belief. 

i.e. G(T,p) ∀t∈T [B(t,¬p∧¬C(T,¬p))∧ 

                                                        ¬B(t, ¬C(T,¬p)) G(t,C(T,¬p)∧B(t,¬p))] 

where p is ,numberofmembers(T)>=N  and C is the common belief operator [18] 
which is proven by assuming:  

∀t∈T [B(t,¬p)∧¬C(T,¬p))∧¬B(t, ¬C(T,¬p)) 
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Then from the definition of team goal:  

B(t, ¬p)∧¬C(T,¬p) G(t, C(T,¬p)) 

and G(t, C(T,¬p)) is satisfied because if one member of the team does not believe 
there is mutual belief then there is no mutual belief. So since the consequent of an 
implication must remain true until the antecedent or the implication statement 
becomes false   
G(t, C(T,¬p)) holds until 

  t∈T B(t,¬p∧¬C(T,¬p))∧¬B(t, ¬C(T,¬p)) doesn’t; 

that is until ¬B(t,¬p)∨C(T, ¬P)∨B(t, ¬C(T,¬p)) is true. 

So all the conjuncts in the definition of G(t,C(T,¬p)∧B(t,¬p)) are satisfied proving 
the result. Similar results follow as a matter of logical consequence. Knowledge 
producing actions, whether sensory, inferential or discovered, lead to consequences 
for the system that can be established via this formal representation. 

5   The Story So Far: Calculus to Code 

The above example shows one simple rule of interaction. It is an important rule in 
maintaining a specified number of agents in a team, as each collective will require 
some minimum number of entities to function optimally. However there will be 
many, many such imperatives from which emergent behaviour will arise from 
association with the team, the world and other systems. Some imperatives will follow 
as logical consequence to a minimal set of imperatives whilst the specification allows 
emergent intelligence. 

5.1   Formalisation 

As can be seen from the brief example above; logic based formalism works well in 
using system knowledge to extract necessarily true system properties as logical 
consequences of the specification. The Situation Calculus [19] further provides 
knowledge capturing and deliberation techniques to more than adequately reason 
about complex, dynamical agent systems. It is a first order predicate calculus with 
some second order features giving excellent expressiveness with good reasoning 
methods. In this way the emergent logical consequences of the specification can be 
considered and verified whilst emergent behaviour arising from the inevitable 
incompleteness of the specification can be handled via a dynamic observer monitoring 
for novel system aspects and consciousness intelligence. The further introduction of 
stochastic actions to the Situation Calculus representation allows extraneous and 
natural events to be included. The Stochastic Situation Calculus therefore provides a 
mapping from knowledge to stochastic actions, including environmental actions, 
based both on sensing mechanisms and logical reasoning. As a representational tool it 
does not require an explicit enumeration of the state space, thus permitting unknown 
situations. In this way it can be used as a Swarm Calculus, for a bottom-up approach, 
and as a behavioural deliberative model in norm based systems, for a top-down, 
model-driven approaches.  Its use here is to provide a unifying design model,  
within the recursively embedded VIA-A structure, to represent composite  
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swarm-based/deliberative agents and agent systems that have the capacity to 
regenerate themselves.  This encourages fault tolerance and redundancy through 
diversity, cognitive immunity by adapting and generating agents, to learn from past 
failures, and deliberation for adapting to threats. It specifies the interactions of the 
huge systems that may lead to some form of consciousness unavailable from static 
program structures. 

5.2   Implementation 

A new scripting language, based on logical statements, has been developed that is 
very useful in taking the logical sentences and transforming them into run time 
adaptable and addressable objects. This language, Neptune [20] thus provides the 
means to realise, in practice, the desirable system properties that are evident in the 
logical specification. Thus agent systems exhibiting human-like behaviour can be 
constructed from autonomous subagents acting in teams to provide distributed control 
following as logical consequences from the specifications. Additionally chance 
discovery can be performed by a “stripped down” system controller assessing 
emergence and providing a norm based deliberative agent connotation. In this way as 
this work progresses it is hoped to provide a way for consciousness and thus 
intelligence to emerge. 

5.3   An Example Application: Dynamic Physical Rendering 

Dynamic Physical Rendering involves the creation of physical moving 3-dimensional 
replicas of objects. This involves using captured 3-D images and rendering them 
through programmable matter called claytronics [21]. The basic unit of claytronics is a 
catom. Replicas are then produced from a collective of catoms. Catoms have four 
capabilities: computation, power, movement and communications.  It is clear how the 
work described in this paper is applicable to claytronics. The rendered physical 
representation will be a collective of many catoms. These catoms will be required to 
interact and be controlled in a manner that allows emergent properties to appear yet will 
be subject to some central authority to shape the entity required. So, for instance, an 
entity will require a minimum number of collected catoms and behaviour, as shown in 
the example, will follow from this. 

Each catom has its own computational power. So suppose there is a simple rule 
(stated in the situation calculus) of interaction that the catom is required to be 
maintained at a background colour with: 

colour(do(a,s))=C ⇔ [colour(s)=C ∧ a≠changeColour(C’)] ∨  

                                                                                             a=changeColour(C) 

poss(changeColour(C),s) backgroundColour(s)=C 

Thus we can supply a simple logical model of the interactions of the catom with its 
environment for use in the overall large specification that determines collective 
association and behaviour.  

In turn this rule may be implemented through Neptune to provide an adaptable 
software object attached to the catom. i.e. 
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situation sChangeColour to Catom C 

{ 
   when (changed c.Colour) 
} 
 
action aChangeColour situation sChangeColour to Catom C 
{ 
   sChangeColour.C.Colour = C.Colour; 
} 
 
prediction pChangeColour to situation aChangeColour 
{ 
   aChangeColour.sChangeColour.C.Colour = 
aChangeColour.C.Colour; 
} 
 

In this way a method of changing colour for a simple coloured catom is specified, 
which is part of the catom and allows interaction with the environment. Additionally 
this software object is adaptable should this be necessary through the runtime 
governance of the system. 

6   Conclusion 

Work has already been completed on an agent-norm based approach to system self-
governance. This has been implemented as a medical decision support system 
exhibiting deliberation on knowledge for both application and system level control. 
It is implemented in a grid computing environment using autonomous agents in a 
top-down system controlled norm-based application. The work on Swarm Calculus, 
towards a means of producing some notion of consciousness, is more recent. The 
programming model is seeking to make use of a calculus to code design so that the 
logically developed methods of modelling swarming and emergent behaviour can 
have a verifiably correct implementation into code and display self aware 
intelligence. This forms part of the ongoing work, on many fronts, to develop a 
unifying model of an intelligent, generic agent. At a nanotech level such work has 
implications for the control of small components (agents) to be used for the 
construction of larger agents (e.g rendering a claytronic entity). It is hoped, by this 
holistic approach to bridge the gap between the learning ability of the human mind 
and that of software agents by modelling a software system as an agent consisting 
of a complex arrangement of adaptable agent subsystems utilising different 
organisational and deliberative schemes within a unified representational structure 
to ultimately display true intelligence. 
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Abstract. A multiagent architecture for vehicle and structural health
monitoring is proposed. A prototype using this architecture was devel-
oped using JADE. Critical aspects of the design were verified using the
SPIN model checker. The tasks in our framework are related to data-
fusion levels and Gibson’s realist position on direct perception of objects
and affordances. We show how a system consisting of a multiagent system
along with the monitored platform exhibits behavior at several levels,
from the physics of acoustic emissions to inter-agent conversations ex-
pressing desires and beliefs. Communication, perception of public events,
and system design conspire to provide the common knowledge needed to
coordinate diagnostic tasks.

1 Introduction

The rising costs of current maintenance paradigms for expensive, safety-critical,
or mission-critical structures motivates the search for health monitoring systems
that can determine the status of their platforms in near real time. An architecture
for such a system must address highly dynamic relations among computational
components. We propose a multiagent architecture for vehicle and structural
health monitoring. The next section presents background on this architecture.
The need and requirements for health monitoring are outlined, the general na-
ture of multiagent systems is discussed, and applications of agent technology to
vehicle health monitoring are reviewed. Since our prototype system uses JADE,
it and the FIPA reference architecture are outlined as well as the contract net
protocol, which provides flexibility while respecting agent autonomy. Section 3
presents our architecture in terms of the kinds of agents and their interactions.
Since the behavior of non-trivial concurrent systems is too complex and un-
controllable to be thoroughly tested, formal methods have been developed to
verify their designs. One such method, model checking, is used in the current
study and is discussed in section 4. Section 5 discusses the implementation of
our prototype health monitoring system. In section 6, we relate the tasks in our
framework to data-fusion levels and Gibson’s realist position on direct percep-
tion of objects and affordances. We show how a system consisting of a multiagent
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system and the monitored platform exhibits behavior at several levels. Commu-
nication, perception of public events, and system design conspire to provide the
common knowledge needed to coordinate diagnostic tasks. Section 7 concludes
and suggests future work.

2 Background

2.1 Vehicle Health Monitoring Systems

Restoration maintenance involves replacing a part only when it has completely
failed, but this practice leads to overall deterioration of system performance.
Use- or schedule-based maintenance is preventative maintenance done after cer-
tain hours of service or a period of time [1]. Worst case scenarios are taken
into account and there is wastage of useful components [2]. These practices in-
cur huge costs involving maintenance of inventory, quality checking of removed
parts, and labor [3]. Such costs are driving the research towards a system whose
status can be accurately determined in real time. The system must identify any
deterioration in the structure before it becomes catastrophic [4]. In particular,
maintenance is based on the condition of the structure rather than the hours of
service. The shift from reliability-centered to condition-based maintenance has
led to structural health monitoring, where a structure is diagnosed continuously
and remedial action is taken as needed. Safety and reliability are added to the
structure because of an efficient and reliable health monitoring system [1].

For diagnosis, certain other tasks have to be done first: data collection, signal
processing, feature extraction and classification [1]. Various techniques are used
for each of these tasks. Data collection is done by various kinds of sensors and
data acquisition equipment. Signal processing is done by various hardware- and
software-based techniques. Feature extraction and classification use various ana-
lytical and non-analytical techniques. As these systems evolve, the coordination
of the sensing, communication, feature extraction, and diagnosis will be critical
[5]. An architecture that addresses this diversity of sensors and techniques as
well as the huge amounts of data is needed.

2.2 Multiagent Systems for Vehicle Health Management

Wooldridge [6] defines an agent as a computer system capable of autonomous
action that meets its design objective in the environment in which it is situated.
An intelligent agent in particular is capable of flexible autonomous action. The
characteristics of multiagent environments identified by Huhns and Stephens [7]
are that they “provide an infrastructure specifying communication and inter-
action protocols,” they are typically open, and the agents are autonomous and
distributed. Huhns and Stephens also see coordination as critical and, in the case
of self-interested agents (where negotiation is involved), as a major challenge.

Some studies on structural health monitoring mention agents as an immediate
future trends [4]. Agents have been developed for patient monitoring [8], airport
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gate assignment [9], and machinery health monitoring [10]. Such agents are deci-
sion modules that use knowledge-bases, neural networks, and similar techniques.
Agents are used for structural health monitoring in Lockheed Martin’s MENSA
architecture [11]. While, however, there is some cooperation among these agents,
the interaction among them is not principled and control flow is rigid. To enjoy
advantages of multiagent systems such as flexibility and fault-tolerance, a team
of agents must use a protocol to structure their activity in a collaborative and
flexible way [5].

2.3 Contract Net Protocol

The contract net protocol [12] is a protocol for high-level distributed problem
solving whose efficiency has been demonstrated in flexible manufacturing [13]
and other fields. An agent has a task that it decomposes into subtasks for which
it becomes the manager. For each subtask, the manager broadcasts a task an-
nouncement. Each agent evaluates the task description in the announcement; if
it wants the task, it sends a bid to the manager. The manager uses the descrip-
tions in the bids to rank them and sends an award to the agent with the winning
bid, now known as the contractor. When the contractor completes the subtask,
it sends a final report to the manager. When all final reports are in, the manager
combines the results to give the result for the overall task. Since tasks themselves
may have subtasks, a given agent may be both a contractor (of one task) and a
manager (of another). This gives rise to an ad hoc control hierarchy structured
to perform the top-level task. Manager-contractor communication that occurs
between sending the award and returning the report allows the contract net pro-
tocol to be used in two complementary ways: in initialization, the protocol is
used to select agents to be responsible for subtasks in an ongoing task; in op-
eration, the protocol allows agents performing ongoing tasks to handle specific
problems on the fly. As another enhancement, if a set of potential contractors is
narrowed in advance, focused addressing rather than broadcasting may be used.

2.4 FIPA Reference Architecture and JADE

FIPA (Foundation for Intelligent Physical Agents) [14] is an IEEE Computer
Society standards organization that promotes agent-based technology and the
interoperability of its standards with other technologies. The FIPA reference
architecture requires an agent management system, a directory facilitator, and
a message transport system. A FIPA ACL (Agent Communication Language)
message contains one or more parameters, such as the performative, content,
ontology, and content language. JADE [15] is an open source tool to develop
multiagent systems using an API provided through Java classes. It provides the
runtime environment for the agents, is easily distributed across several machines,
and adheres to FIPA standards. In particular, it provides classes to implement
the contract net protocol. JMatLink [16] is open source software that provides an
API for invoking Matlab commands from Java applications. All Matlab programs
used in our prototype (for example, neural networks) are accessed from JADE
agents via wrappers that we have developed.
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3 Architecture

Our multiagent framework is pictured in Figure 1. None of the implementations
we envision involves mobile agents, and the fact that agents may be associated
with locations on the monitored platform does not force any particular dis-
tributed design. There are system agents and data-management agents, which
provide services but generally do not participate in the contract net protocol.
Supervisor agents are bound to one or more sensors and announce diagnostic
tasks when they detect suspicious values. Monitor agents coordinate the diag-

Monitor 
Agent

Supervisor Agent

Specialty Agent 
(Feature Extraction, Classification)

System  
Agent

Data management 
Agent

Fig. 1. Line sketch of Vehicle Health Monitoring System

nosis tasks. By participating in the contract net protocol, a monitor agent may
become responsible for several supervisor agents. Other monitors may supervise
the monitors that directly supervise the supervisor agents, and so on, resulting
in a hierarchical configuration. Monitors focus on regions that warrant more
attention and refocus as the situation evolves. A supervisor agent announces a
diagnosis task to all monitors above it in the hierarchy. A specialty agent wraps
a procedure for a specific task within an agent interface. In the current proto-
type, specialty agents include feature-extraction agents, classification agent, and
location agents. In the applications we address, a specialty agent should include
at least three things in its bids: an estimate of the reliability of its result, an
estimate of the time it would take to produce the result, and an estimate of the
bandwidth needed to produce the result. The monitor can use these estimates
to make awards in a way sensitive to the current state of the system and the
task at hand.

4 Model Checking

Concurrent systems present problems for testing since the behaviors of the sepa-
rate threads can be interleaved in many ways, and interactions between threads
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can cause the effects of inputs to cascade in complex ways. A tester’s ability to
exercise the behavior of concurrent systems is thus limited. The alternative to
testing a system is formal verification of its design. Properties required to hold
of the system (its specification) are formulated in an appropriate formalism, and
the design, a blueprint for generating the system’s behavior , is formulated in
a less abstract notation. Then one shows rigorously that the design does not
violate the specification. One such method is model checking, where the specifi-
cation properties are expressed in a temporal logic and the design is expressed
as one or more finite state automata. One checks that the automata, taken as
an interpretation of the properties, form a model for those properties, i.e., an
interpretation in which all are true. The first subsection here describes the SPIN
model checker [17], and the remaining subsections describe two abstract designs
we verified with SPIN along with the specifications used.

4.1 The SPIN Model Checker

SPIN’s design language is PROMELA, which has asynchronous processes
(threads of control), buffered message channels, and structured data. There are
two ways for processes to synchronize. One process may block on an expression
until it becomes true because of the action of another process. And, when one
process attempts to input from a channel with a zero-length buffer (a rendezvous
channel), it must wait until another process outputs on that channel; likewise,
output on a rendezvous channel must wait for input. PROMELA semantics
involves non-determinism at both the statement and process-scheduling levels
and there is no notion of time. So design models avoid implementation detail
and focus on the assumptions made within each module about interaction with
others. This abstract nature is necessary since the verification procedure must
check each state to verify the specification properties, and abstraction defeats
complexity by drastically reducing the number of states.

Correctness claims can be inserted into a PROMELA model. For example, a
never claim checks system properties after each statement execution for behavior
that should never occur. A more perspicuous way to express SPIN specifications
is with Linear Time Temporal Logic (LTL), which has two kinds of formulas:
state formulas and LTL formulas. The truth value of a state formula is de-
termined at an extended system state, which is a control state with a unique
combination of values for the system variables. An LTL formula, in contrast, is
evaluated only for complete runs. A state formula contains no LTL operators
while an LTL formula contains state formulas and LTL operators. Regarding
the operators, p U q is true if p is true until q becomes true (after which p may
or may not be true), �p is true if p is eventually true (true now or sometime
in the future), �p is true if p is always true (true now and at all times in the
future), and Xp is true if p is true at the next time. To show that a property is
not violated, negate its formula. SPIN translates the LTL formula into a never
claim that is included with the PROMELA system model, and the automata are
combined. SPIN then tries to find runs satisfying the LTL formula, that is, it
tries to find a falsifying behavior for the original property.
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4.2 Verifying Concurrent Activity of Specialty Agents

We assume that the contract net protocol and FIPA infrastructure behave cor-
rectly and model synchronization directly between agents. Two PROMELA
models were constructed. The first, called Operation, addressed the operation
of monitor agents. A second, called Initialization, addressed hierarchy issues re-
lated to the establishment of a hierarchy. The intended behavior for Operation
is depicted in Figure 2. We consider only one monitor agent and one supervisor
agent. An event detected by the supervisor agent always results in an award to
the monitor agent. We assume that the monitor agent finishes classifying and lo-
cating an event before the next one is detected. When the monitor agent finishes
with one event, it waits for the next, and this carries on indefinitely. The monitor
agent must manage four subtasks: feature extraction for classification, feature
extraction for location, classification, and location. In this model, there is only
one agent for each of the feature-extraction tasks, but there are two agents each
for classification and location. Thus, the selection afforded by the contract net
protocol comes into play only for deciding between the classification agents and
for deciding between the location agents. The symmetry of the situation does
not warrant introducing further possibilities. We want an abstract design with

Trigger Event
Monitor

Location featuresClassification features

Classifiers Locators

Fig. 2. Verifying Concurrent Activity of Specialty Agents

several properties. First of all, diagnosis should complete indefinitely often. Also,
whenever the extraction of features for classification is finished, classification it-
self should eventually finish. Finally, if classification has not been completed,
then it should not complete until feature extraction for it has completed. We
can express these specifications in a mixture of LTL and English as follows:

� � Diagnosis complete,
� ( Feature extraction done → � Classification done ),
� ( ! Classification done→( ! Classification done Ufeature extraction done))

The specifications for classification and the feature-extraction tasks it depends
on could be repeated for location, but symmetry makes one case representative.

The PROMELA model has ten processes representing eight agents; two dis-
patch processes represent aspects of the behavior of the monitor agent. All
the processes execute infinite loops. Sequential constraints on the executions
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of processes are mostly established with boolean variables used as guards. When
a process finishes its work for the current event, it sets its controlling variable
to false and sets the variables for its one or more sequels to true. To express
the above specifications in a form that can be used by SPIN, we must replace
the English expressions with expressions over PROMELA variables. Variable
diagend is initially true and becomes true when the diagnosis of an event fin-
ishes; it enables the supervisor process, which sets it to false. finish1 is set to
true by the feature extraction process for classification; it enables classification
and is set to false by the monitor just before it enables classification. Finally,
done1 is set to true by the dispatch process for classification and is set to false
by the monitor just before it waits for the next event. The specifications, then,
are

� � diagend,
� ( finish1 → � done1 ),
� ( ! done1 → ( ! done1 U finish1 ) ).

4.3 Establishing a Monitor Hierarchy

Regarding Initiation, when a monitor agent gets a task from a supervisor agent,
it may pass on the task to another monitor agent that handles a higher task.
The communication in the contract net protocol and the tasks of the monitor
agents are abstracted out to capture just the establishment of the hierarchy and
ensuring that the hierarchy is maintained. Following the three cases in Figure 3
from left to right, initially the supervisor has a task that it announces to three
monitor agents. One monitor is awarded the task, and it in turn announces
the task to the remaining two monitors, one of which is awarded the task. One
monitor is free, left out of the hierarchy. We want to guarantee that the hierarchy
persists. One specified property is that, if the hierarchy is established, then the
free monitor never gets the award. Another is that, whenever the hierarchy is
established, then the top monitor eventually is awarded the task. We can express
these properties in English as:

Hierarchy set → � ! Free agent gets award,
� (Hierarchy set → � Parent monitor handles the task ).

The PROMELA model consists of four processes, each representing an agent.
One is the supervisor. There are three monitors, all instances of the same process

Monitors

Supervisor Supervisor

Selected 
MonitorMonitor Monitor

Supervisor

Child 
Monitor

Parent 
Monitor

Fig. 3. Establishing a Monitor Hierarchy
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type (with the same code). All processes execute infinite loops. Most of the syn-
chronization is achieved with rendezvous channels. The process identifiers (pids)
of processes are used for identification. In the chain of awards that sets up the hi-
erarchy, monitor processes pass their pids with their reports, which allows them
to be identified for subsequent awards. Selection of monitor process for award
is non-deterministic during setup. Several global variables are maintained for
model checking. Boolean variable sbsq indicates the beginning of any diagnostic
task except the first. It is initially false, is set to true each time but the first
that the supervisor executes, and is set to false when the child monitor receives
an award. Variable freepid is set to the pid of the free monitor when it receives
a reject during setup, and toppid is set to the pid of the parent monitor during
setup. Finally, curpid is set to the pid of the parent monitor when it receives
a reward after setup. With these variables, we can now express the above LTL
specifications as: sbsq → � ! p and � (sbsq → � q ), where p is defined to be
curpid == freepid and q is defined to be curpid == toppid.

5 Prototype

We have implemented a prototype of our architecture using JADE, Matlab,
and JMatLink. It uses acoustic emission (AE) signals to classify events related
to fatigue crack growth in materials. It has seven agents: a supervisor agent,
two feature extraction agents, two classification agents, and two monitor agents.
Current work is adding location agents and the necessary additional feature-
extraction agents. Various parameters (features) of AE signals are used to clas-
sify their sources. AE signals from mode I fatigue crack growth normal to the
direction of the load axis in fabric composite materials as well as modes I and
II delamination growths are considered. Simple coupon specimens of glass fab-
ric/epoxy composite laminate are used to generate the different types of AE
signals [18]. Specimens are loaded in an MTS (material testing system) ma-
chine and the AE signals are recorded with a digital oscilloscope. The winning
feature-extraction agent runs a Matlab script on the waveforms thus obtained
to extract eight features, namely, symmetric amplitude and duration and asym-
metric amplitude and duration for both shear and normal sensors. Two different
feature-extraction agents are obtained by different instantiations of the feature
extraction agent class. The values of these features are supplied to the winning
classification agent, which runs a neural network for which supervised training
was used. Classification identifies one of the three failure modes of the composite
material. Two different classification agents were obtained by using different sets
of training data.

Concerning the overall structure and operation of the prototype, each agent
registers itself with the Directory Facilitator of the JADE runtime environment.
An agent looking for a service finds the agents providing it, allowing the contract
net protocol to use focused addressing. In the prototype, a potential contractor
responds to an announcement with a randomly-generated number thought of
as its estimate of the time to perform the announced task. A diagnosis task is
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initiated when the user provides the supervisor agent with an ordinal number
identifying the data set for the simulated fault; this action is the triggering
event for the supervisor agent. The supervisor agent then selects a monitor
agent through the contract net protocol. With the award, the supervisor agent
passes to the monitor agent the ordinal. The monitor agent then announces a
feature-extraction task, and the selected feature extraction agent is passed the
ordinal of the data set. The feature extraction agent runs a Matlab script on
the data set and stores the feature values in a file whose name is reported back
to the monitor agent, which then announces a classification task. The selected
classification agent connects to Matlab, inputs the file with feature values to the
trained neural network, and reports the classification back to the monitor agent,
which reports it to the user.

6 Agent Ecology and Societies

A health monitoring system benefits from sensors distributed over the struc-
ture to whose data we can apply data fusion, “the process of combining data
or information to estimate or predict entity states [19]”. The OODA model was
an early data-fusion model that divided the fusion process into four stages: ob-
serve, orient, decide, and act. The waterfall model represented a bottom-up tree
from sensor observations to decision making. Both were too rigid and circum-
scribed [20] and have been largely superseded by the JDL Data Fusion Model
[19], a functional model that does not dictate a processing sequence. Instead, it
recognizes five functional levels:

– Level 0 (Signal Refinement) involves sub-object data assessment that ad-
dresses pixel/signal-level data.

– Level 1 (Object Refinement) estimates and predicts entity states and includes
tracking and classifying objects.

– Level 2 (Situation Refinement) infers relations among entities
– Level 3 (Threat Refinement) assesses the potential impact of the situation

based on a priori knowledge and prognosis.
– Level 4 (Process Refinement) manages resources to give a form of adaptive

data acquisition and processing to support mission objectives.

In health monitoring, it is often more natural to speak of events rather than
objects. The levels of the JDL model correspond nicely to the functions of our
multiagent health monitoring framework. At Level 0, we have feature extraction,
at Level 1, local classification and location, at Level 2, more global classification
and location (involving hierarchies of monitor agents), and, at Level 3, progno-
sis. With a multiagent system, Level 4 occurs spontaneously and continuously
through negotiation.

The JDL model embodies some strong realist assumptions, especially in dis-
tinguishing between Level 0, where information is handled without regard to its
referents, and Level 1, where events and objects in the real world are located
and classified. Despite this realism, much of the data-fusion literature pays little
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regard to real-world referents. As an antidote to this myopia, we suggest a realist
picture of perception, such as Gibson’s ecological theory of visual perception [21].
What we directly see according to Gibson is the layout of objects by virtue of
the stimulus information in the structure of ambient light. This realist position
relates to JDL Level 2. A central concept for Gibson is that of the affordances
of the environment: what behavioral possibilities it furnishes for an animal. In
perceiving affordances, Gibson maintains, we perceive values: some offerings are
beneficial, some injurious. This realist interpretation of Level 3 is particularly
relevant to health monitoring.

We have agents distributed on a platform, perceiving features of events taking
place in it and collaborating through speech acts (messages with performatives)
to arrive at a diagnosis. To disentangle the threads here, consider Dennett’s
account of various strategies used to predict the behavior of systems [22]. The
physical strategy views a system in terms of the physical sciences. If a system is
too complex for the physical strategy, we may use the design strategy: predict
that the system will behave as it is designed to behave. Finally, when even the
design stance is impractical, there is still the intentional stance, treating the sys-
tem as a rational agent: determine its beliefs and desires, then predict behaviors
that will further its goals. Although the intentional stance (applied to compu-
tational entities) has been a cornerstone of agent research, our focus is different
from Dennett’s. While Dennett is concerned with the status of beliefs, we are
interested in agent coordination hence in (socially situated) communication acts.
(Still, such acts express beliefs and desires.) All three strategies dovetail together
in our framework. The physical strategy is appropriate for addressing physical
events and materials, the design strategy applies because a design is instantiated
in the structure and known by the agents (in fact, it provides affordances), and
the intentional strategy comes in because we are concerned with communication
acts that express beliefs and desires.

Focusing on the social aspect, the key issue is how the agents coordinate to
reach a diagnosis given the events they perceive together and the information
they share about the design of the platform. Now, common knowledge can be
shown to be a necessary condition for coordination [23]. Where φ is a proposi-
tion and G is a group, it is common knowledge in G that φ if everyone in G
knows that φ, everyone in G knows that everyone in G knows that φ, and so
on for arbitrarily deep nestings of the operator “every one in G knows that.”
Clark and Carlson [24] have presented heuristics for inferring common knowl-
edge in terms of situations shared by agents A and B. The physical co-presence
heuristic comes into play when an object is located between A and B and both
see (or otherwise perceive) the object and each other simultaneously. With the
linguistic co-presence heuristic, there is a triple co-presence of A, B, and the lin-
guistic positing of the object of common knowledge. Finally, by the community
membership heuristic, if A finds that B is in the same community as A, then
A may assume that B has that community’s common knowledge. All three of
these heuristics apply to our agents. Community membership is designed into the
system, and the agent communication language is designed to achieve linguistic
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co-presence. Physical co-presence applies because several agents can perceive an
event and, by design or arrangement, they have information about their neigh-
bors’ locations. Realism regarding perception makes it appropriate to apply this
heuristic. Model checking fits nicely into this picture: the synchronization that is
central to the abstract software design being verified is an abstraction from the
system that is the object of the common knowledge that makes the coordination
among the agents possible.

7 Conclusion

We formulated a multiagent structural health monitoring architecture that in-
cludes system agents, data-management agents, and alarm-raising supervisor
agents bound to groups of sensors. There are also monitor agents, which coordi-
nate the diagnosis task and configure themselves hierarchically. Specialty agents
provide specific services by incorporating specialized software. The contract net
protocol is used both to assign responsibilities and to assign problems on the fly.
Since this highly concurrent architecture is too complex and uncontrollable for
thorough testing, we used model checking to verify abstract designs of critical
aspects against LTL specifications. Finally, a prototype to classify events related
to fatigue crack growth was built. We related the tasks in our framework to
data-fusion levels and Gibson’s realist position on direct perception of objects
and affordances. We showed how a system consisting of a multiagent system and
the monitored platform exhibits behavior at several different levels, from the
physics of acoustic emissions to inter-agent conversations expressing desires and
beliefs. Communication, perception of public events, and system design conspire
to provide the common knowledge in the agent community needed to coordinate
diagnostic tasks. We intend to work on a multi-level interpretation with sys-
tematic integration of social and ecological concepts with each other and with
concepts at the physical and design levels. This will reduce the conceptual dis-
tance between the physical events and awareness of the impact of the current
situation on the success of the mission. Future work will also involve more ex-
tensive prototypes, and more aspects of the architecture will be model checked.
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Abstract. Model-driven development generates software artifacts from abstract 
model representations through a series of specification elaboration and refine-
ment activities. Yet, the resulting systems must still be debugged at the source 
code level; leaving it to the developer to associate the symptoms found during 
debugging with the root causes in the models. Abstractions in the model result 
in difficulties correlating between models (where changes are made) and the ar-
tifacts (where effects of the changes occur). This paper examines the issues in-
volved in debugging systems produced using a model-driven approach and pro-
poses an architecture for a model level debugger based on our work on the Cou-
gaar Model Driven Architecture (CMDA). We present an approach that mimics 
current debuggers by storing the relevant mapping and transform information in 
the model repository during generation and then using it to construct the 
debugging structures needed for examining the program during execution from 
the model perspective.  

1   Introduction 

As we continue to evolve software development to generate software from more ab-
stract representations (i.e., models), there is an increasingly significant disconnect 
between debuggers and the models that developers use to generate the software. 
While some commercial and experimental environments attempt to make this connec-
tion, the absence of debugging capabilities at the model level is hindering the progress 
in generating software systems. With highly complex and even radical applications of 
agents in today’s emerging systems, this gap between debuggers and models used to 
produce these systems must be addressed. The debugger-to-model chasm is becoming 
painfully clear in Model-Driven Architecture (MDA – also known as Model-Driven 
Development). Moving from abstract Computation Independent Models (CIMs) to 
Platform Independent Models (PIMs), and ultimately to Platform Specific Models 
(PSMs), is a long way from the output of a typical debugger. Yet with MDA, the 
changes to “misbehaving software” will not be performed in the lowest level source 
code, but rather in the models. Hence there is a need to map the outputs of the debug-
ger to the source code and ultimately to the models where the changes would be 
made. Without connecting debugging with the models, software engineers are left to 
manually map the symptoms shown in the code to the root causes in the models. 
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In a typical software debugging activity, the software engineer prepares the envi-
ronment to run a program in a debug mode and interacts with source code represented 
in the debugger. The debugger maps the language (typically 3rd generation language 
– 3GL), to the breakpoints, registers, and the like that are monitored in the debugging 
environment. However, when the “programming” is at the more abstract model level, 
the software engineer is left to manually map the information from the debugger to 
the relevant models. 

Over the past two years we have applied the MDA approach to improving the pro-
ductivity of Cognitive Agent Architecture (Cougaar) development teams. While there 
are substantial improvements using the Cougaar Model Driven Architecture (CMDA) 
approach [1], there are disconnects between the resulting code execution and the rele-
vant models used to generate these systems. We believe that the ability to effectively 
debug agent based systems, particularly the more sophisticated ones that are emerging 
today, will require support for resolving problems (detected in the operation) at the 
model level itself. For example, an agent is produced through a series of models and 
the behavior in the resulting software is incorrect. So, the developer runs a debugger 
to pinpoint where the problem is first manifest. While the debugger helps find where 
in the code the problem shows up, this is sometimes several models removed from 
where the syntactic or logical error was induced. Hence, the developer goes through a 
series of model explorations to determine at what model level the change can be suc-
cessfully made. This can be improved by taking advantage of the roundtrip engineer-
ing support espoused in MDA [2]. The mappings and transformations provide de-
pendency relationships that connect the identified debug point and its relationship to 
each model that was used to produce that piece of code.  

The objective of this research is to provide an extension to the debugging facility 
where the model pieces can be depicted along with the debugged code. We believe 
that this would greatly enhance the developers’ ability to diagnose certain types of 
problems that are often troublesome for agent developers. Therefore, in this research 
we examine a model-level debugger for CMDA based systems. We are hopeful the 
lessons we learn in this research generalize to the MDA and agent architecture com-
munities at large. Anticipating the increasingly complex tasks that radical agent archi-
tectures will demand, we believe that debugging will concomitantly become impor-
tant to identify causes of identified problems. While source code debuggers help with 
identifying where in the code that things go wrong, we do not have good mechanisms 
to connect these observations with the models in CMDA where the changes to the 
system are made. 

2   Model Driven Architecture 

Model Driven Development (MDD) provides the ability to create models (at various 
levels of abstraction), systematically refine and elaborate them, and provide automatic 
(or semi-automatic) translation to one or more execution platforms. The Object Man-
agement Group (OMG) has specialized this concept a bit and led the way with MDA 
advocating Unified Modeling Language (UML) as the modeling technology at the 
various levels. 
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In some sense, MDA is a natural progression from previous advances in computer 
science. Using models in the development of a system has been practiced for decades, 
and even for centuries in other engineering disciplines (e.g., Building Architecture). 
Perhaps the most telling transition in mindset is how modeling in MDA takes a model 
(typically an abstraction of a reality) and creates an executable form through a series 
of predictable transformations.  Since the computer uses a conceptual medium devel-
oped by a software engineer (i.e., a model or series of models), transforms now make 
abstractions of the real world accessible and even executable on a computer. In this 
sense, models are no longer simply an aid in understanding  the model now becomes 
something much more concrete. 

Like other engineering disciplines, software architecture helps us deal with the in-
herent complexities of building today's software systems. Systematically, separating 
concerns, formalizing the interfaces through standards and the like, provides better 
leverage for developing and evolving the software we employ. Software architecture 
– the structure or structures of the system, which encompass software components, 
their externally visible properties, and the relationships among them – addresses the 
aforementioned growing complexity by providing structure for thinking about and 
communicating key relationships between components, whether they are Commer-
cial-Off-The-Shelf (COTS) software, middleware, or custom developed. 

MDA endeavors to achieve high portability, interoperability, and reusability 
through architectural separation of concerns. In some respects, MDA is an advanced 
perspective on well-known essential systems development concepts practiced over the 
years (albeit frequently practiced poorly). MDA hinges on the long-established con-
cept of separating the operational specification of a system from the details of how 
that system implements those capabilities on its respective platform(s). That is, sepa-
rate the logical operational models (external view) from the physical design for the 
platform implementation. 

Starting with an often abstract CIM such as a business process workflow or func-
tional description, the PIM is derived through elaborations and mappings between the 
original concepts and the PIM renderings. Once the PIM is sufficiently refined and 
stable, the PSMs are derived through a further series of elaborations and refinements. 
The PSMs can then be transformed into a completed operational system. 

The CIM layer is where vernacular specific to the problem domain is defined, 
where constraints are placed on the solution, and where specific requirements reside. 
Artifacts in the CIM layer focus largely on the system requirements and their envi-
ronment to provide appropriate vocabulary and context (e.g., domain models, use case 
models, conceptual classes). The CIM layer contains no processing or implementation 
details.  

The PIM provides the architecture, the logical design plan, but not the execution of 
the plan in a tangible form. Beyond high level services, the problem domain itself 
must be modeled from a processing perspective. The PIM is where the logical com-
ponents of the system, their behaviors, and interactions are modeled. PIM artifacts 
focus on modeling what the system should do from an external or logical perspective. 
Structural and semantic information on the types of components and their interactions 
(e.g., design classes, interaction and state diagrams) are rendered in UML, the defacto 
modeling language for MDA. 
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Mapping from the PIM to the PSM, is a critical element of the MDA approach. 
The mappings from platform independent representations to those that implement the 
features or functions directly in the platform specific technologies are the delineation 
point where there is considerable leverage in MDA. This mapping allows an orderly 
transition from one platform to another. But the utility does not stop there. Like the 
PIM, there is the opportunity to have layers within the PSM to produce intermediate-
transformations on the way to the executable system. These models can range from 
detailed behavior models to physical source code used in the construction of the  
system. 

Direct PIM to PSM mappings are only possible in relatively simple situations to-
day. Today's modeling languages are not sufficient to express all possible processing 
mechanisms. While UML 2.0 in MDA is a reasonable attempt to address this limita-
tion, there are still significant hurdles before it is applied in the large.  However, it is 
valuable for our perspective of a model level debugger. In the following section, we 
examine debugging as it applied to model level debugging. 

3   Debugging and Model Debugging 

Debugging software is a relatively mature activity with most commercial compilers 
providing some level of debugging as a standard part of their product [3, 4]. Indeed, 
this aspect of a compiler becomes an important factor in employing a language in the 
development of a system. Moreover, most competent programmers and software 
engineers are facile at using debugging software to identify root causes to problems 
[3]. These debuggers provide functions to track the values of variables, step through a 
program (single-stepping), stop  at some kind of event by means of breakpoint, and to 
modify the state of the program (update variables and the like) while it is running. 

As important as debuggers are, they are somewhat limited. Debuggers often 
change the internal timing of a software program; making it difficult to track down 
runtime problems in complex multi-threaded or distributed systems. Most research 
today on debuggers centers on this aspect. With the advancements in reusable compo-
nents and highly distributed systems using the web, there has been a move towards 
pervasive debugging [6] – the ability to deal with both horizontal and vertical debug-
ging. While this is addressing an important trend, we find that another important trend 
is the movement towards “programming-in-the-more-abstract.” That is, the level of 
programming is moving up to more abstract models and the debugger must address 
this concern. 

The need for model level debugging is important in MDA as correlating the mod-
els with the generated artifacts can be a tedious task. The task is difficult due to the 
wide semantic gap between the high-level models and the generated source code. The 
problem is aggravated by the automatic code generators used in MDA As a result of 
internal transformations and optimizations, the generators often produce code that, is 
not easily traced to the original model. Consequently, model-level observability – 
ability to trace errors in the generated code to the original models, has become a key 
issue for MDA [7]. The practical difficulties encountered in diagnosing problems 
arising of uncorrelated code and models can nullify the advantages of MDA. Pro-
grammers faced with the task of modifying code and reflecting those changes into the 
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model are more than likely to be discouraged from relying on the models. Hence for 
MDA to be successfully adopted, model level error reporting and debugging facilities 
are needed [5, 7]. 

There is some related work in model debuggers [5] where models of software sys-
tems are examined and debugged. This assumes an executable rendering of the model, 
but is frequently a simulation rather than the actual operational software source. Some 
researchers have used this approach with UML renderings of systems in real-time 
applications where the temporal aspects of software can be examined [5]. While these 
serve to help the MDA community, we are endeavoring to take this a step further and 
connect the models through MDA mappings and transformations to the actual source 
code being executed. 

4   Cougaar Model Driven Architecture 

The Cougaar is an open source, distributed agent architecture resulting from over 
eight years of research and development, and over a $150 million investment by the 
Defense Advanced Research Projects Agency (DARPA) under the Advanced Logis-
tics Program (ALP) and the Ultra*Log program [8]. The CMDA system simplifies 
Cougaar-based application development by generating key software artifacts from the 
models. CMDA has two important abstraction layers namely Generic Domain Appli-
cation Model (GDAM) and Generic Cougaar Application Model (GCAM). The 
GDAM reflects the PIM and encompasses the representation of generic agent and 
domain specific components found in the domain workflow. The GCAM layer, upon 
which the GDAM layer is built, reflects the PSM or Cougaar architecture, its specifi-
cations and environment.  

Fig. 1 illustrates the basic CMDA approach. At the CIM level, the user specifies 
the workflow of the intended Cougaar system using XML Process Definition Lan-
guage (XPDL). Then the user maps the workflow of the intended system into its PIM 
and PSM using GDAM and GCAM components respectively. The GDAM and 
GCAM components are stored in a repository. An assembly approach is used, 
whereby the developers assembles the system and implementation models of the in-
tended Cougaar based system by choosing, configuring and connecting various prede-
fined GDAM and GCAM components. Once completed, the models are then fed into 
a transformer which then parses through this assembled set of models to produce the 
actual software artifacts such as requirements, design, code and test cases. The gen-
eration of software artifacts is controlled by predefined mapping rules and template 
structures.  

It is important to note that a typical Cougaar application is not completely gener-
ated from models and specifications. We estimate that 70% will be from GDAM, 20% 
from GCAM, 8% from Cougaar directly, and 2% using Java directly. Where there 
does not exist a component at the given level, that component is constructed from 
components at the next lower level. This recursive approach is depicted in CMDA 
meta-model. 
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Fig. 1. The different abstraction layers present in the CMDA approach [1] 

The meta-model defined using Eclipse Model Framework (EMF) is a critical  
aspect of the CMDA system. The meta-model, shown in Fig. 2, is the underlying 
representation for defining GDAM and GCAM model elements. At its core, the meta-
model has an entity named component. It is configured for use by specifying a set of 
parameters. The leaf component (the component at the lowest level) names a mapping 
profile that links to the template used by the transformer for generating the required 
artifact. The instantiation is a reference to a component combined with values for its  
 

 

Fig. 2. Recursive meta-model forming the underlying representation 

parameters. A parameter provides a declaration of the required input data. It allows 
hierarchical specification and allows optional, required, multiple, and singular values. 
Parameters have constraints, specified in Object Constraint Language (OCL), that 
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validate values assigned to them. A role is a parameter that specifies another instantia-
tion to build connections between instantiations. 

The same meta-model was used to define GDAM and GCAM to allow smooth 
translation between the two layers and to facilitate multiple sub-layers within the 
layers. The meta-model is recursive in nature and allows the users to specify the in-
tended model as a hierarchy of components. Each component contains instances of 
other components, at same or lower layer. The leaf components are attached to the 
templates that contain information on how to process the parameters of the compo-
nent and generate the required artifacts. For generating the code artifacts Java Emitter 
Templates (JET) were used. 

4.1   Debugging in CMDA Context 

The CMDA design approach lends itself to the debugging task through the mappings 
and transformation approach employed. The semantic gap between the models and 
generated code is less for CMDA than for typical MDA approaches, since the JET 
templates are linked to the leaf GCAM model elements. The mappings are derived 
from an intermediate file that contains component references and the relevant parame-
ters. During the generation of a system, this information is recorded in the repository 
for future use in roundtrip engineering and in debugging. 

There is still a need for model level debugger. For example, without the model de-
bugger, once a fault is found in the source code, the developer has to correlate the 
fault to its possible location in the model level in his or her mind. It is important to 
recognize that the CMDA model debugger will enable developers to validate the 
system at a higher abstraction - the model level, just like the CMDA approach enabled 
developers to develop systems from the model level. 

5   Design Approaches 

The architecture for the CMDA model level debugger was decided after studying two 
prominent design approaches for model debugging [5, 9]. The first approach envi-
sioned the ability to directly execute and debug the models right before the models are 
transformed into the required artifacts. In order to directly execute at model level, the 
models have to be represented using executable languages like executable UML [10]. 
In this approach, debugging becomes a part of the verification phase and is performed 
at certain level of segregation from the actual artifacts. Hence the developers will 
have to resort to normal debugging methods to triangulate the faults observed in the 
generated artifacts. The second approach is to execute the generated code and propa-
gate the outputs back into the models. In this approach, the debugging is moved up-
wards into the higher abstract level – the model level. While the approach is harder to 
implement, as it requires roundtrip engineering, it eliminates the need to perform both 
model debugging and artifact debugging. The second approach is analogous to tradi-
tional debuggers where the machine code is executed and the results are traced back 
to the source code. 

Nucleus Bridgepoint [5] uses the first approach of using executable model. 
However, we decided to forgo that approach based on concerns about accuracy  
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and necessity to perform transformation from EMF models to OMG-compliant 
eXecutable and Translatable UML (xtUML). The concern about the accuracy of 
transformation comes from the need to develop and maintain mapping criteria and 
transformation rules for each model elements. The problem of necessity occurs 
because of the need to develop an entire new set of models and make them fit into the 
existing CMDA architecture. 

The second approach of executing the actual code and propagating the results back 
into the models calls for development of dependency and traceability techniques to 
keep the software artifacts and models consistent. Since most of the requisite informa-
tion is already recorded (into models and templates) during the transformation of 
model into software artifacts, the approach can be implemented by developing a 
mechanism to trace the results to the correct model levels. 

5.1   CMDA Debugger Design Approach 

In order propagate the error up to the models, an analysis module named CMDA 
model level debugger, is hooked onto the conventional source code debugger. Fig. 3 
delineates the design approach for the proposed CMDA model level debugger. The 
overall working of the approach is explained as follows: the CMDA system retrieves 
the models from the CMDA repository and generates the source code, which is then 
compiled into machine code. During compilation, the compiler inserts instrumentation 
code and also consults/updates the compiler symbol table. The machine code is then 
executed and upon triggering a breakpoint or fault, the debugger halts the execution 
of the application. The debugger records the execution state of the application and 
correlates it with the source code. Then the information is passed on to the model 
level debugger. Just as the source code debugger correlates between source code and 
machine code, the model level debugger correlates between source code and the dif-
ferent models. 

 

 

Fig. 3. CMDA model level debugger design approach 
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To correlate between the source code and model, the analyzer must be aware of all 
the dependencies between the source code and the models. These details are obtained 
from CMDA repository which acts as the symbol table for the model level debugger. 
The repository stores all the GDAM models, GCAM models, templates and their 
interlinking dependencies. The model debugger pulls in all the source code that was 
being executed and finds the interlinking model elements by searching the repository. 
Thus the model debugger superimposes and correlates the current state of the applica-
tion with all the related models, providing the developer with a model perspective on 
the debugging.  

6   CMDA Debugger Architecture 

The CMDA system was implemented as a series of plugins for the Eclipse IDE. The 
Eclipse platform provides a very powerful framework that provides support for ex-
tending or adding new debuggers without too much effort [4]. The general architec-
ture of the proposed CMDA debugger is shown in Fig. 4. The Eclipse SDK provides a 
framework (collectively known as the debug platform) for building and integrating 
debuggers. The debug platform defines the debug model, a set of Java interfaces 
modeling a group of artifacts (like threads, stack frames) and actions (like stepping, 
resuming) common to debuggers [4]. The execution interface extends the standard 
Java debugger and obtains the debugging context information, which is passed on to 
the debugger manager. The debugging manager has two important modules GDAM 
and GCAM. As their name refers, each of the modules retrieves the respective model 
elements from the CMDA repository and populates the models with the debugging 
context.  

 

 

Fig. 4. General architecture of the proposed CMDA model level debugger 
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Since the leaf components of the models have links to templates, it is responsibility 
of the GCAM module to perform the matching between the source code and its corre-
sponding templates. A series of techniques from as trivial as matching the name of 
source code file (each root template has information on how file name has to be gen-
erated) can be used for the same. Once the appropriate template and GCAM model is 
found, the module tries to populate the model with the debugging context. GDAM 
module performs the matching and population of the GDAM model. Matching of the 
GDAM module is trivial as the linkage is clearly defined. Upon reaching the topmost 
GDAM component or when an error in matching occurs, the modules output the 
model information into the visualization engine. The visualization engine modifies the 
appropriate user interface model (GEF is the underlying framework of CMDA GUI) 
to display the mapped models in the CMDA GUI. The logger is a standard logging 
module that records all the mapping activities performed by the debugger manager. 
The logger also stores configuration information that the debugger manager is inter-
ested in. Since false positives and mismatches are likely to occur, going through the 
log report can provide developers with useful information on how to enhance the 
model level debugger. 

6.1   Limitations 

As Cougaar is a multi-agent software application, the limitations of most conventional 
debugging tools for multi-agent software systems are applicable to the CMDA model 
level debugger. A key limitation of debuggers for multi-agent system is that they have 
huge overhead and output too much raw data, thereby lowering the comprehensibility 
and usability. Further, the dynamic nature of agents’ compounds to the problem of 
elucidating the precise information required for triangulating where the defects might 
be [11]. Furthermore, some of the limitations present in source code debuggers are 
likely to be aggravated in CMDA debugger due to the abstractions involved. These 
include changes to the temporal nature of the software due to breakage in execution 
and changes to program logic due to the introduction of instrumentation code. There 
is a high probability for CMDA debugger to generate false positives while the models 
are populated with the debugging context. However, we believe the generation of 
false positives and other limitations of the debugger will get contracted as it evolves. 

7   Conclusion 

With the trend towards model-driven development, there is a concomitant need for de 
model-level bugging environments. While this research is in it’s early stages, it shows 
promise with using the artifact generation information from the models to support the 
debugging environment. Analogous to the typical compiler, the CMDA debugger uses 
the elaboration and refinement information from the models to reference the code that 
is debugged. Code to model dependencies are represented statically.  

There are some limitations to our approach. First, the correlation between the 
source code debugger and the model(s) is highly dependent on the dependency infor-
mation collected during model elaboration and refinement. The debugging precision  
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is a function of how well the information is collected and conditioned for the debug-
ging environment. This means that the mappings and transformations must be con-
ducted with “debugging in mind.” We will need to experiment with the prototype to 
evolve our representation and conditioning approaches. Also, the propagation can be 
compute intensive as there is a lot of information that must be analyzed and rendered. 
We will need to overcome this to provide near real-time stepping through the code 
and model. The user interface is aligned with debugging in the current architecture, 
but future versions of this capability must support things like stepping through the 
model (break points at model boundaries). 

This research is the first step towards a full model level debugger for CMDA. 
Upon this we plan to build a pre-conditioner for debugging information to improve 
performance and accuracy. Further, we plan to build on the typical functions of tradi-
tional debuggers and experiment with features like animated tracing of the execution 
from the perspective of the models and model level breakpoints. With a model level 
debugger that provides features at the level of the models, model-driven development 
should be more effective. 
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Abstract. On the one hand, the Software Product Lines (SPL) field is devoted to
build a core architecture for a family of products from which concrete products
can be derived rapidly by means of reuse. On the other hand, Agent-Oriented
Software Engineering (AOSE) is a software engineering paradigms dedicated to
build software applications composed of organizations of agents. Bringing AOSE
to the industrial world may prettily benefit from SPL advantages. Using SPL phi-
losophy, a company will be able to define a core MAS from which concrete prod-
ucts will be derived for each customer. This can reduce time-to-market, costs,
etcetera. In this paper, we expose the similarities between AOSE and SPL con-
cluding the viability of future research in Multi-Agent Systems Product Lines
(MAS-PL).

1 Introduction

Agent-Oriented Software Engineering (AOSE) is a new software engineering paradigm
that promises to enable the development of more complex systems than with current
Object-Oriented approaches using agents and organizations of agents as the main ab-
stractions [14]. In this field, agents are used as the main implementation artifact and
organizations as the main artifact in modelling the system.

A software agent is a piece of software which exhibits the characteristics firstly de-
scribed by Wooldridge in Ref. [26], namely: autonomy, reactivity, pro-activity and so-
cial ability. Autonomy means that an agent operates without the direct intervention of
other agents or humans and has control over its actions and its internal state. Reac-
tivity means that an agent perceives its environment and responds in a timely fashion
to changes that occur in it. Pro-activity means that an agent does not simply react to
changes in the environment, but exhibits goal-directed behaviour and takes the initia-
tive when it considers it appropriate. Social ability means that an agent interacts with
other agents (if it is needed) to complete its tasks and helps or contends with others to
achieve its goals. Many researchers are in agreement with the vision of software agents
as a characterization; and they, depending on their community, attach new attributes to
software agents as mobility in distributed systems or adaptability in machine learning.

Since agents are limited to a specific environment and have limited abilities, complex
problems are usually solved by a group of agents [4,5,24], that is to say, by a Multi-agent
System (MAS hereafter).

M.G. Hinchey et al. (Eds.): WRAC 2005, LNAI 3825, pp. 98–108, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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A Software Product Line (SPL) is a set of software-intensive systems sharing a com-
mon, managed set of features that satisfy the specific needs of a particular market seg-
ment or mission and that are developed from a common set of core assets in a prescribed
way, according to the definition used by the Software Engineering Institute (SEI) [6].
This engineering paradigm is focused in bringing reuse until its final outcomes. It is
devoted to create software products, which are said to belong to a family of prod-
ucts, which present similar features, from a set of reusable software artifacts and a core
architecture.

Both fields present many similarities. In this paper, we expose these similarities and
we argue for the viability of integrating both approaches to enable the development of
MAS Product Lines.

This paper is structured as follows: Section 2 shows the case study we use; Section 3
shows the features of AOSE that are important for our purpose; Section 4 shows the
features of SPLs that are important in the AOSE field; Section 5 shows the main sim-
ilarities between both and the deficiencies of AOSE to enable MAS-PLs; and finally,
Section 6 shows our main conclusions.

2 A Case Study

The case study we have chosen has been proposed in the Modelling TC of FIPA with
the purpose of evaluating how AOSE methodologies model the interaction aspect.

This case study is used along this document. Following, we present the original ver-
sion of the problem1. The case study represents the UN Security Council’s Procedure to
Issue Resolutions. We use some parts of this example to show the similarities between
both fields.

In addition, notice that, although it does not represent a product line, we will take
some of the requirements as optional to obtain a product line where each product
presents a subset of the requirements presented following.

Assumptions
(1) The following procedure is defined for a case study of agent-oriented modelling.

It is inspired from the procedure of UN Security Council to pass a resolution. However,
it does NOT necessary represents the reality.

(2) There are also some unspecified issues and ambiguity in the specification that
models in different notations and languages may resolve by themselves in the process
of modelling.

Description
The UN Security Council (UN-SC) consists of a number of members, where some of
them are permanent members. Members become the Chair of the Security Council in
turn monthly.

To pass a UN-SC resolution, the following procedure would be followed:

1. At least one member of UN-SC submits a proposal to the current Chair;
2. The Chair distributes the proposal to all members of UN-SC and set a date for a

vote on the proposal.

1 http://www.auml.org/auml/documents/UN-Case-Study-030322.doc
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3. At a given date that the Chair set, a vote from the members is made;
4. Each member of the security council can vote either FOR or AGAINST or

SUSTAIN;
5. The proposal becomes a UN-SC resolution, if the majority of the members voted

FOR, and no permanent member voted AGAINST.
6. The members vote one at a time.
7. The Chair calls the order to vote, and it is always the last one to vote.
8. The vote is open (in other words, when one votes, all the other members know the

vote)
9. The proposing member(s) can withdraw the proposal before the vote starts and in

that case no vote on the proposal will take place.
10. All representatives vote on the same day, one after another, so the chair cannot

change within the vote call; but it is possible for the chair to change between a
proposal is submitted until it goes into vote, in this case the earlier chair has to
forward the proposal to the new one.

11. A vote is always finished in one day and no chair change happens on that day. The
chair sets the date of the vote.

3 Agent Oriented Software Engineering (AOSE)

In addition to the commonly used division in requirements, analysis, design and imple-
mentation, the software process of AOSE methodologies can be also divided into two
phases, each of them used to describe the organization of the system from a different
point of view [27]. In this section, we first show each kind of organization, to later
discuss on the software process and models used in AOSE.

An organization represents a group of agents formed in the system in order to obtain
benefits from one another in a collaborative or competitive manner [15,20,26]. There-
fore, a multi-agent organization emerges when there exists some kind of interaction
between its participants, either through direct communication or through the environ-
ment. As recognized in the field of economics [19], and other authors have recognized
in the agent field, e.g. [3,11,27], an organization can be observed from two different
points of views:

The interaction point of view: It describes the organization from the set of interac-
tions between the roles played by agents in the system. The interaction view corre-
sponds to the functional point of view in the field of economics.

The structural point of view: It describes the agents of the system and their distri-
bution over sub-organizations, groups, and teams. In this view, agents are also
presented in hierarchical structures showing the social architecture of the system.

In agency, the former is called Acquaintance Organization, and the latter is called
Structural Organization [27]. Both views are intimately related, but they show the or-
ganization from radically different points of view.



Can AOSE Be Used to Build MASs Product Lines? 101

Fig. 1. Acquaintance vs. structural organization

Since any structural organization must include interactions between its agents in or-
der to function, it is safe to say that the acquaintance organization is always contained
in the structural organization. Therefore, if we determine first the acquaintance organi-
zation, and we define the constraints required for the structural organization, a natural
map is formed between the acquaintance organization and the correspondent structural
organization. This is the process of assigning roles to agents [27]. Thus, we can con-
clude that any acquaintance organization can be modelled orthogonally to its structural
organization [18].

In Figure 1, we present a conceptual model of the case study presented in Section 2.
Here we are representing only the procedure required to send, vote, withdraw and accept
or reject resolutions not representing the possibility of changing the Chair, that is to
say, an acquaintance sub-organization of our problem. Notice that for representing an
acquaintance sub-organization we should have represented also the dynamic part of the
system, that is to say, the behaviour of the roles in the sub-organization. However, we
have not done that in order to simplify.

In the acquaintance organization, it implies a set of roles and interactions between
them. In the structural organization, these roles can be mapped onto a certain group of
agents to form several organizational structures. For example, as shown in Figure 1, we
can map the acquaintance organization into a plain structure, a hierarchical structure,
and so on. Thus, this exemplifies the fact that the structural organization of the UN
Security Council is different and independent from its structural organization.

Most AOSE methodologies recognize this separation what derives in that some
methodologies have proposed a software process where one phase appear for devel-
oping each kind of organization: acquaintance analysis and structural analysis2. This
fact is ratified by the importance that the role concept, crucial for modelling the ac-
quaintance organization, has reached in this field where most important methodologies

2 Notice that these phases present a different name in each methodology, for example, in GAIA
they are called analysis and architectural design respectively.
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Fig. 2. Role Model for the Issue Resolution system goal

use it. Good examples are GAIA [27], INGENIAS [21], MASE [9], PASSI [2] and
TROPOS [1].

For example, the MaCMAS methodology fragment [22], represents role models
as it is shown in Figure 2. This model uses an extension of UML collaborations to
represent the acquaintance organization. We can find two main types of elements in
the model: (1) roles, represented as boxes; and (2) interactions, represented using
ellipses. Roles show which are their general goals and their particular goals when
participating in a certain interaction with other roles or with some part of the en-
vironment. Roles also represent the knowledge they manage, middle compartment,
and the services they offer, bottom compartment. For example, the goal of the Chair
role is ”Manage resolutions”, while its goal when participating in the Withdraw pro-
posal interaction is to manage the process of withdrawing a proposal. In addition to
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Fig. 3. Example of Goal Hierarchy using TROPOS

roles, interactions show us also some important information. They also must show the
system-goal they achieve when executed, the kind of coordination is carried out when
executed, the knowledge used as input to achieve the goal and the knowledge pro-
duced. For example, the goal of the interaction Submit Proposal is to ”Submit a new
proposal for a resolution”. It is done by taking as input the knowledge of the Submit-
ter about the proposal and producing as output the date of the proposal in the Chair,
and the proposal in the Chair and in the Observer. Notice that as shown in Figure 1,
these roles will be mapped onto agents in the phase devoted to build the structural
organization.

In addition, many authors recommend the use of goal-oriented requirement appro-
aches for this kind of systems. Goal-oriented requirements techniques analyse system
goals producing a hierarchical diagram where each system goal is related with the sys-
tem goals that decompose it [1,8,9,17,27]. Since agents are designed to fulfill goals,
and organizations are designed to fulfill those goals that are sufficiently complex for
requiring more than one agent to be satisfied, this information is also used to deter-
mine decomposition of the acquaintance organization into sub-organizations by some
methodologies, for example, MASE, GAIA and MaCMAS.

In Figure 3, we show the hierarchical goal diagram of our case study using TRO-
POS. As can be observed, the general system goal of our case study is Keep Peace and
Security. It shows also that to fulfill this goal the diagram we have to fulfill two finer
grain system goals since they are related using an AND decomposition: the system goal
Issue Resolutions and Change Chair. Notice that also OR relationships are allowed.
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4 Software Product Lines (SPL)

The software process of SPLs approaches is usually divided in two main stages: Domain
Engineering and Application Engineering. The former is in charge of providing the
reusable core assets that are exploited during application engineering when assembling
or customizing individual applications [12].

Domain engineering and application engineering phases are usually further divided
into analysis, design, and implementation. From all these phases, we only detail those
that can be applied in AOSE.

The analysis phase of domain engineering is applied to analyse the problem domain
of a family of applications. It main purpose is identifying the common set of features
that can be reused across all the applications that can be built under the domain at hand.
Following, we show the most relevant stages for our purpose:

Domain scoping is devoted to describe the boundaries of the domain, which is crucial
to determine the scope and needs of the product family. Another important stage is
the Commonality analysis. It specifies the commonalities and points of variation in
the domain that represents the first step towards a description of the family and the
differences that each product may present.

Domain modelling is dedicated to produce documents where common and variable
requirements are showed and the analysis models for these requirements. Thus, these
documents specify which set of requirements are valid and may produce a valid applica-
tion and which do not. One of the most accepted techniques to perform these documents
are feature models [7]. A feature is a characteristic of the system that is observable by
the end user [16].
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Fig. 5. Conceptual diagram of our case study using MIXIN layers

Feature models represent features hierarchically and its relationships. For example,
in FODA, features in the model can be mandatory, optional, or alternative. In figure 4,
we show an example of feature model representing our case study with some modifi-
cations. Filled circle indicate that the feature is mandatory, that is to say, if the parent
feature is present in the product, it must be also present in the product. White circles in-
dicates that feature is optional as it happens with the Change Chair feature. This means
that we can have a product where the chair is changed and another product where there
is no possibility of changing the chair. Although not showed in the example, we can also
have filled arc indicating that for the final products we must have at least one of the fea-
tures linked, and white arcs indicating that we can only have one of the features linked.

Finally, in the domain modelling stage, we can have also analysis models that show
the interface(s) required in the system for including each feature. As we discuss below.

The design phase of domain engineering is devoted to model the core architecture.
It consists in producing a core architecture by means of combinations of models that
represent features that are common. Many approaches have appeared in the literature.
From all of them, we are interested on those that are nearer to the AOSE field. In these
approaches, role models are used to represent the interfaces and interactions that com-
ponents of the system should provide to cover certain functionality (a feature in the
features model). Later, role models are composed to produce the core architecture, the
most representative are [13,25], but similar approaches has appeared in the OO field,
for example [10,23].

Figure 5 shows a conceptual diagram of our case study extracted from [13]. There,
authors show the mapping of domain models, collaborations, over the core architecture
needed to build a certain product using OO programming. In this paper, authors use col-
laborations to represent features of the system. Collaborations are interaction-centered
diagrams that show the interaction in a subsystem and the roles, sub-set of objects,
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involved in these interactions. Later they propose to map them onto certain objects for
building a concrete product, as shown in the figure using our case study.

Finally, notice that we do not discuss on the implementation phase of domain engi-
neering since it does not correlate with agent implementations. We neither detail appli-
cation engineering due to AOSE methodologies are not prepared to produce a family of
MASs.

5 SPL/AOSE Correlation

The main points of correlation between both fields are three: (i) the correlation in the
phases; (ii) the correlation in models used at requirements; (iii) and the approach fol-
lowed to design a concrete MAS and to design a certain product. The main difference is
that AOSE does not manage in the requirement phase the existence of several products.
Following, we discuss first on similarities, to finish showing the main deficiencies of
AOSE to enable a MAS-PL approach.

The first similarity is probably the most significant. This can be found in the phases
of both approaches. On the one hand, the analysis phase of domain engineering in SPL
is dedicated to define an architectural independent document describing the features of
the system and the acquaintance analysis in AOSE is dedicated to define a set of ac-
quaintance sub-organizations independently from the structural organization. Thus, as
shown in previous sections, in both cases role models/collaborations are used to rep-
resent these independent models. However, SPL approaches finalize this phases imple-
menting a core architecture, while AOSE approaches do not implement these models.

The second similarity consists in that requirement documents used for this phase in
both fields present the same structure. Given that system goals in MASs are functional
requirement observable by the end user, system-goals represent the same concept than
features. Feature models, used in SPL, and goal-oriented requirement documents, used
in AOSE, are both hierarchical where each feature/system-goal is decomposed in lower
levels of the hierarchy indicating in both cases when they are mandatory, optional or
alternative. Notice only some AOSE methodologies allow having mandatory, alternative
or optional goals, but this feature is present in AOSE.

Third, the design phase of domain engineering in SPL is dedicated to produce the core
architecture for the family of products and structural analysis is also devoted to define
the structure of the organization of the MAS. In both field, role models/collaborations
are used for defining architecture/structure independent models, and in both fields this
process consists in composing models. If we concentrate on the SPL approaches that
represent features using role models/collaborations, and given that in AOSE this phase
consists in composing roles and the also use role models, both fields follows a quite
similar procedure and models.

However, there exist some important differences between both fields mainly moti-
vated by that AOSE is concentrated on developing a unique MAS and not a family of
them. While in SPL the features that are composed to build the core architecture are
those that are common for all products and composition is done guided by the com-
monality analysis, in AOSE roles are composed when they pursue similar goals or they
provide a similar functionality.
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As can be observed, current AOSE approaches align with SPL in their phases and
models, but lacking from the artillery necessary to develop a general architecture instead
of a unique product, namely, commonality analysis and domain scoping.

6 Conclusions

In this paper, we have shown the similarities and differences between SPL and AOSE.
Given that AOSE methodologies follows a similar approach to SPL, where phases and
models are quite similar, we can conclude that they may be extended to enable the
development of MAS Product Lines (MAS-PL).

The main research lines that should be explored for enabling this kind of develop-
ments reside in: (i) adding commonality analysis and domain scoping to AOSE method-
ologies; and (ii); integrating the results of these activities to modify the process of
assigning roles to agents and thus building a structural organization able to produce
a family of MASs. In addition, the application engineering phase of SPL should also be
included in AOSE methodologies to establish the procedures needed to derive a MAS
from a MAS-PL.
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Abstract. In this paper, which is exploratory in nature, we introduce the con-
cept of dynamic electronic institutions, which from our point of view arise from 
the convergence of two research areas: electronic institutions and coalition for-
mation. We define dynamic electronic institutions as emergent associations 
(coalitions) of intelligent, autonomous and heterogeneous agents, which play 
different roles, and which are able to adopt a set of norms in order to interact 
with each other, with the aim of satisfying individual goals and/or common 
goals. These formations are dynamic in the sense that they can be automatically 
formed, reformed and dissolved, in order to constitute temporary electronic in-
stitutions on the fly. This type of institution should be able to adapt its norms 
and objectives dynamically in relation to its present members (agents). In this 
paper we introduce some preliminary ideas on how these systems could be de-
veloped, and present our first exploratory work. We argue that dynamic elec-
tronic institutions are potentially important in open-agent system applications. 

1   Introduction 

It is a fact that real-world applications are becoming increasingly complex, mainly as 
a result of the ever more significant role of Internet in our lives and the emerging 
model of electronic business. There are many application domains and scenarios in 
which autonomous, heterogeneous agents (software applications, enterprises, nodes, 
groups of people, etc) have to collaborate and engage themselves in temporary alli-
ances that must change dynamically according to their environment and their current 
situation (markets, topologies, etc.).  

Open multi-agent systems can be a good solution to these problems, and coalition 
formation mechanisms facilitate the appearance of these agent associations, but the 
emergent behaviour of the global system can become chaotic and unexpected. In criti-
cal applications this can be a significant problem, and it is evident that regulatory 
measures must be introduced to determine what things agents can and cannot do.  

Electronic institutions could be an effective solution. They incorporate social and 
organisational abstractions into multi-agent systems; in fact they incorporate the rules 
of the game. But they have some limitations: they are based on medium to long-term 
associations between agents and require a design phase performed by humans; there 
are no mechanisms for reconfiguration and dissolution processes. A possible solution 
could be to use virtual organisations (which allow temporary collaboration between 
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independent, heterogeneous enterprises), but these systems have domain-dependent 
infrastructures and architectures for the B2B electronic commerce domain. We argue, 
therefore, that the solution to these problems could be a novel concept: dynamic elec-
tronic institutions, which are the main object of this research.  

There is no significant work in the literature on dynamic electronic institutions: the 
notion was recently introduced as a challenge for agent-based computing, when the 
term dynamic electronic institution appeared in a roadmap for agent technology [7]. 

As we will explain in this paper, which is a summary of our recent work [9], we 
believe that dynamic electronic institutions arise from the convergence of two lines of 
research: electronic institutions and coalition formation. In this work we explain the 
main limitations of these two areas to justify the need to develop dynamic electronic 
institutions. We explore these ideas and concepts, present some first approaches, and 
introduce our first exploratory work. 

This paper is organized as follows. In section 2 and 3 we explain the most impor-
tant characteristics of coalition formation and electronic institutions respectively, their 
key concepts and their main problems, in order to show how mutual benefit could 
arise by combining them. Next, section 4 illustrates the connection points between 
coalition formation and electronic institutions, and suggests that a combined approach 
of these two areas could be beneficial for both. Section 5 addresses the concept of  
dynamic electronic institution and its lifecycle. In section 6 we explain the foundation 
phase, which we introduce as the process of turning a coalition into a temporary elec-
tronic institution. Section 7 shows our first exploratory work (in the area of Opera-
tions Other Than War, OOTW). Finally section 8 presents conclusions and future  
research. 

2   Coalition Formation 

Forming coalitions between self-interested agents is a subject of long-standing inter-
est for game theory researchers, and more recently for computer science researchers 
(particularly in multi-agent systems, MAS). 

The coalition formation problem arises when a group of agents needs to work to-
gether to achieve tasks in an environment. The main idea behind coalition formation 
is that cooperation between agents may be useful for the group even if the agents are 
selfish and try to maximize their own outcomes. Mutual profit can be gained from 
sharing resources and redistributing tasks. Coalitions allow agents to perform tasks 
together that they would be unable to perform individually. 

At its simplest the problem can be defined as in [5]: “Given a population P of 
agents and a list of tasks or goals T, select subgroups of agents S1, S2, S3… of P to 
address each of the tasks in T”. 

In the general case this problem is computationally intractable (NP-Hard). This is 
very easy to understand: given N agents and k tasks, there are k(2N-1) different possi-
ble coalitions. The number of coalition configurations (different partitions of the set 
of agents in coalitions) is of the order O(N(N/2)) [16]. Therefore, it is clear that an ex-
haustive search of the coalition configuration space is not feasible (when the number 
of agents is large). In [14] this problem has been diminished by using the idea of  
alliances which effectively reduce the search space. 
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In its beginnings, coalition formation was addressed in game theory. However the 
game theoretic approach is centralized, and as stated before, computationally intracta-
ble. Recent works in distributed artificial intelligence have resulted in distributed al-
gorithms with computational tractability. Some of these recent and interesting studies 
are: dynamic coalition formation [5] and iterated coalition formation [8]. 

Shehory presents several issues that have to be addressed by agent designers when 
they attempt to provide their agents with coalition formation mechanisms [16]: 

• Given a set of tasks and a set of agents, which coalitions should an individual 
agent attempt to form? 

• Once the agent knows which coalitions it would prefer to form, what mecha-
nisms can it use to form the coalitions? 

• Given a specific coalition formation mechanism, what guarantees of efficiency 
and quality are provided? 

• Once a coalition has been formed, how should its members go about distribut-
ing the work/payoff? 

• At times, it may be necessary to provide means for the agents to dissolve the 
coalitions they have formed. 

In our opinion there are three important problems that appear when the coalition is 
formed. We argue that these problems can be studied and possibly solved by turning 
the coalition into a temporary electronic institution (dynamic electronic institution), 
which is the main aim of our research. These three problems are: 

• Teamwork problem: this problem arises from team coordination between dis-
tributed agents. A serious problem in coordinating distributed agents that have 
formed a coalition, is how to enable them to work together as a team towards a 
common goal. This is a strategy coordination problem. 

• The Work/Payoff distribution problem: once a coordination strategy has been 
chosen there is a problem of how the work and the payoff should be distrib-
uted among the agents. 

• Emergent behaviour problem: coalition formation approaches have an agent-
centred view so the emergent behaviour of the global system can become cha-
otic and unexpected. 

3   Electronic Institutions 

From a social point of view, it is easy to observe that the interactions between people 
are often guided by institutions that help and provide us with structures for daily  
life tasks. Institutions structure incentives in human exchange (political, social, or  
economic). Institutions establish laws, norms and rules to respond to emergencies, 
disasters, et cetera. Somehow we could say that institutions represent the rules of the 
game in a society or, more formally, are the humanly devised constraints that shape 
human interaction [12]. 

The idea to use organisational metaphors to model systems was early proposed  
[13, 19]. These approaches suggest structuring the agent society with roles and rela-
tionships between agents. But the study of electronic institutions is a relatively recent 
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field (the first approach was [11]). The main idea is simple, and it could be summa-
rized by imagining groups of intelligent, autonomous and heterogeneous agents, 
which play different roles, and which interact with each other under a set of norms, 
with the purpose of satisfying individual goals and/or common goals. As a first im-
pression, it could seem that these norms are a negative factor which adds constraints 
to the system, but in fact they reduce the complexity of the system, making the 
agents’ behaviour more predictable. 

Research in Distributed Artificial Intelligence (DAI), and more specifically, re-
search in MAS, has focused on the individual behaviour of agents (agent-centred 
view). But this agent-centred perspective is not useful in complex systems like open 
agent systems, where their components (agents) are not known a priori, can change 
over time, and can be heterogeneous and exhibit very different behaviours. Open 
agent systems are also characterized by limited trust and conflicting individual goals. 
In these kinds of systems, this vision that is focused on the agent can cause the emer-
gent behaviour of the global system to be chaotic and unexpected. In critical applica-
tions this can be a significant problem, and it is evident that is necessary to introduce 
regulatory measures which determine what things the agents can do, and what they 
cannot. It is here where the institutions acquire importance. Agent-centred approaches 
can be useful for closed and small systems, but they fail to design open systems  
[2, 15]. 

In Noriega’s thesis [11], an abstraction of the notion of institution is introduced for 
the first time. He is also the first to use the term agent-mediated electronic institution, 
which he describes as: computational environments which allow heterogeneous 
agents to successfully interact among them, by imposing appropriate restrictions on 
their behaviours.  

Continuing and extending the ideas of Noriega’s thesis, there is Rodríguez-Aguilar 
[15] who emphasizes the need for a formal framework which allows to work with 
general electronic institutions. 

From these first approaches to this area, to the actual lines of research, there have 
been different European research groups working on similar subjects, each one with 
its particular perspective and approach to the problem. At the moment, many efforts 
are dedicated to this research area. The proof of this is that in 2003, five PhD theses 
intimately related to this subject were presented. The theses are: [1, 3, 4, 6, 18]. 

These different approaches to electronic institutions have demonstrated how organ-
isational approaches are useful in open agent systems, but in our opinion, they still 
have several problems and limitations. We have summarized these problems in the 
following list: 

• All the approaches to electronic institutions are based on medium to long-term 
associations and dependencies between agents. This characteristic is useful in 
some application domains but it is a significant problem in other domains, 
where changes in tasks, in information and in resources make temporary asso-
ciations necessary (short-term electronic institutions). 

• Electronic institutions require a design phase (performed by humans). It is 
necessary to automate this design phase in order to allow the emergence of 
electronic institutions (without human intervention) in open agent systems. 
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• Agents can join and leave institutions, but how do these entrances and exits af-
fect the institutions’ norms and objectives? Could these norms and objectives 
change over time? 

• When an institution has fulfilled all its objectives, how can it dissolve its  
components (agents)?  

In our opinion, these problems and limitations can be studied and possibly solved 
with a coalition formation approach to electronic institutions, in order to develop dy-
namic electronic institutions. This is the main objective of our research. In the next 
section we compare coalition formation and electronic institutions in order to find the 
connection points between them. 

4   Connection Points Between Coalition Formation and Electronic 
Institutions 

Firstly, to show how coalition formation and electronic institutions can converge, we 
have outlined some of their features in Table 1. 

Table 1. Comparison between coalition formation and electronic institutions 

 Coalition formation Electronic institutions 
Design/Creation  
process 

Emergent association (without 
human intervention) 

Designed by humans 

Duration, length Short to medium-term associa-
tions 

Long-term associations 
(static) 

Effects of agents’  
entrances/exits  
(adaptivity) 

DCF methods (Dynamic Coali-
tion Formation [5]) 

Not contemplated 

Dissolution process DCF and iterated coalition for-
mation mechanisms [8] 

Not contemplated 

Teamwork Distinct methods  
(not solved yet) 

Directed through 
roles/norms 

Work/Payoff distri-
bution 

Distinct methods  
(not solved yet) 

Directed through 
roles/norms 

Complexity (# group 
configurations) 

NP-Hard, O(N(N/2)) [16] Limited by the designer and 
by norms 

Openness Tested on open agent systems Tested on open agent sys-
tems 

Local/Global agents’ 
vision & mission 

Local vision & local-global mis-
sion 

Local-global vision & local 
mission 

Typical applications Game theory, e-commerce, res-
cue operations, etc. 

E-commerce, auctions, e-
health, etc. 

Metaphors Teams, alliances, clans, swarms Institutions/Organisations 

Table 1 plots some important features of coalition formation and electronic institu-
tions. Some of the features are limitations and problems that we have commented on 
in previous sections (we have highlighted them in the table). 
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In our opinion the limitations of electronic institutions could be reduced by using a 
coalition formation approach to the problem. In this way the creation and dissolution 
processes could be automated through emergent associations (in relation to the 
agents’ objectives) and emergent dissolutions (when the associations have fulfilled all 
their objectives). Furthermore, a coalition formation approach could improve the in-
stitutions’ adaptivity processes, basically in relation to the agents entering and exiting 
the system, and could allow short to medium-term associations (a very interesting 
characteristic in domains where temporary associations are required). 

Moreover, we believe that some of the problems of coalition formation (teamwork 
and work/payoff distribution) could be reduced and possibly solved by using a joint 
vision of coalition formation with electronic institutions, that is, by turning coalitions 
into institutions (we explain this process in the next sections). In this way, coordina-
tion between agents is improved because the agents acquire roles and obligations 
through the institution’s norms, which reduce the system’s complexity by defining 
exactly what things the agents can do, and what they cannot. 

Therefore, we argue that combining coalition formation and electronic institutions 
is beneficial for both areas. Our proposal is to study a coalition formation approach to 
electronic institutions in order to develop dynamic electronic institutions, which from 
our point of view is a novel and interesting challenge for agent-based computing. 

There is no previous significant work on dynamic electronic institutions: this idea 
has just recently been introduced as a challenge for agent-based computing. It first 
appeared when the term dynamic electronic institution appeared in a roadmap for 
agent technology [7]. In this roadmap the authors emphasize the need to study these 
kinds of institutions and state: 

“The next challenge for agent-based computing is to develop appropriate repre-
sentations of analogous computational concepts to the norms, legislation, authorities, 
enforcement, etc., that can underpin the development and deployment of dynamic 
electronic institutions. (…) Virtual organisations involve dynamic coalitions of small 
groups that can provide more services and make more profits than an individual 
group. Moreover, such coalitions can disband when they are no longer effective. At 
present, coalition formation for virtual organisations is limited, with such organisa-
tions largely static. The automation of coalition formation will save both time and la-
bour, and may be more effective at finding better coalitions than humans in complex 
settings.” 

5   From Coalitions to Institutions: Dynamic Electronic Institutions 

We argue that Dynamic Electronic Institutions (DEIs from now on) can be described 
as follows: emergent associations of intelligent, autonomous and heterogeneous 
agents, which play different roles, and which are able to adopt a set of norms in order 
to interact with each other, with the aim of satisfying individual goals and/or common 
goals. These formations are dynamic in the sense that they can be automatically 
formed, reformed and dissolved, in order to constitute temporary electronic institu-
tions on the fly. This type of institution should be able to adapt its norms and objec-
tives dynamically in relation to its present members (agents).  
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There are several application domains that require short-term agent organisations 
or alliances, in which DEIs could be applied. Table 2 shows three application domains 
for DEIs. 

Table 2. Table 2 shows application domains for dynamic electronic institutions, and also shows 
the different types of agents, associations, norms and dynamics for each domain 

Application 
Domain / 
Scenario 

Description Types of 
agents 

Required 
short-term 
associations 

Required 
regulatory 
measures 

B2B:  
Business to  
Business 
Electronic 
Commerce 

In the B2B scenario, en-
terprises try to fulfil the 
new market requirements 
by connecting themselves 
to temporary corporations 
with flexible structures 
that can change dynami-
cally. 
Scenario dynamics: mar-
ket opportunities. 

Enterprises, 
Organisations 

Corporations 
or alliances 
(virtual or-
ganisations) 

Electronic 
Contract 
(rights, du-
ties and 
penalties) 

OOTW: 
Operations 
Other Than 
War 

In this case the idea is to 
form coalitions of groups 
of people, non-
governmental organisa-
tions (NGO’s), institutions 
providing humanitarian 
aid, and official govern-
mental initiatives. These 
coalitions should become 
institutions in order to 
carry out humanitarian op-
erations like peace-
keeping, disaster relief op-
erations, etc. 
Scenario dynamics: dis-
asters, emergencies, etc. 

NGOs, 
groups of 
volunteers, 
hospitals, etc. 

Short–term 
associations 
for solving 
concrete 
emergencies 

Obligations 
and prohi-
bitions for 
the differ-
ent types of 
agents 

MANETs: 
Mobile  
Ad-Hoc  
Networks 

Ad-hoc networks are char-
acterized by a dynamic to-
pology and self-organizing 
capacity. The scenario re-
quires dynamic, flexible 
and short-term associa-
tions between nodes. 
Scenario dynamics: to-
pology, connections, etc. 

Nodes: mo-
bile hosts or 
devices 
(PDAs, Cel-
lular phones, 
etc.) 

Temporary 
nets 

Self regu-
latory or-
ganisation 

Other possible scenarios: nano-satellite constellations, grid-computing, semantic web. 

In our opinion DEIs should have a lifecycle made up of by three phases: Forma-
tion, Foundation and Fulfilment (We call this lifecycle “3F cycle” [9]). Figure 1  
depicts this cycle. 
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Fig. 1. The lifecycle of Dynamic Electronic Institutions (3F cycle): Formation, Foundation and 
Fulfilment 

• Formation phase: this is the coalition formation phase. Associations between 
agents which have the same (or similar) goals emerge. Other notions such as 
trust between agents should also be considered as important factors in the coa-
lition formation phase. A coalition formation mechanism (protocol and strate-
gies) is necessary to allow agents to form coalitions.  

• Foundation phase: the process of turning the coalition into a temporary  
electronic institution. This phase is the real challenge, because the process of 
turning the coalition into a temporary electronic institution is not a trivial 
problem. We address this question in the next section. 

• Fulfilment phase: when the institution has fulfilled all its objectives, the  
association should be dissolved. This phase occurs because the association is 
no longer needed, or because the institution is no longer making a profit. A 
dissolution process can also be considered after the formation phase. 

Within this lifecycle there are also the re-formation and the re-foundation 
processes as shown in Figure 1. The re-formation process facilitates reconfiguring the 
coalition when member changes occur, and the re-foundation process facilitates 
reconfiguring the institution when member changes occur. 

One of these three phases has been poorly studied in the past: the foundation 
phase (and the re-foundation process). At this moment, we are focusing our work 
on this phase. In the next section we try to explain how this complex process could 
be carried out. 

6   The Foundation Phase 

We define foundation as the process of turning a coalition into a temporary electronic 
institution. This phase is a real challenge because the process of turning the coalition 
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into a temporary electronic institution is not a trivial problem. It requires the agents to 
adopt a set of norms that regulate their interactions. This must be an automated proc-
ess, without any human intervention, so agents must be able to reason and negotiate at 
a high level. 

Our perspective on this problem is that to construct an institution from zero with-
out human intervention may be too difficult, so we argue that an approach based on 
using knowledge from previous cases (like Case Based Reasoning, CBR) could be  
interesting and useful for solving this issue (also for the re-foundation problem).  
Presently, we are directing our efforts in this direction.  

The foundation phase can be represented as a black box in which a coalition is 
turned into an institution (Figure 2). In our approach we would like to work with the 
IIIA's model of an institution [3] so that we can use EIDE tools (Electronic Institu-
tion Development Environment [17]), which in our opinion are the most complete 
and functional tools for this purpose. Therefore, in our approach, the output of the 
black box for the foundation phase should be an ISLANDER specification of the in-
stitution. Thus, AMELI could be used for running the institution specified with 
ISLANDER [17]. 

 

Fig. 2. The Foundation Phase represented using a black box 

In our approach we are using Case-Based Reasoning. CBR is based on the idea that 
new problems are often similar to problems that have been encountered previously 
and that past solutions may be of use in the current situation.  

A stored case refers to a problem situation and contains a description of a problem, 
and its solution, and a new case contains the description of the problem to be solved. 
Case-based reasoning is a cycle. There are four phases in the process: Retrieve,  
Reuse, Revise and Retain. 

With a CBR approach to the foundation process, when a coalition has been formed 
and needs to turn itself into an institution, agents should consult their case databases 
in order to find the stored institution’s specification that adapts best to the present 
situation, and should then make the pertinent reforms to the selected specification in 
order to obtain an institution that works correctly. 

The CBR process should be done in a distributed way (each agent has its own 
stored institution cases, in relation to its own experience in the system) or in a central-
ized way (there is a central database with the stored institution cases). 
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Our first steps are based on a centralized CBR approach. We have used the 
JADE/Agent-0 framework [10], and our agents have a BDI architecture with a mental 
state composed of three mental categories: Beliefs, Commitments and Capabilities. 
Within our CBR mechanism, when a coalition has been formed and needs to turn it-
self into an institution, agents consult a centralized case database in order to find the 
stored institution’s specification that adapts best to the present situation. Then the 
agents have to adopt the norms specified in the selected institution in order to turn the 
coalition into an institution. In our system, norms are adopted by taking on new com-
mitments. Figure 3 shows a scheme of this process. 

 

Fig. 3. A scheme of the foundation process within our system 

7   Exploratory Work: Operations Other Than War 

The task of planning humanitarian aid operations is a challenging problem because it 
means that a large number of different types of organisations have to collaborate in 
order to solve problems in fast-changing environments. OOTW are characterized by 
non-hierarchical decision making and decentralized control. OOTW involves different 
types of operations: non-combatant evacuations, disaster relief operations, food distri-
bution, etc. The agents involved in these operations can be: groups of volunteers, 
NGO’s, institutions, official governmental initiatives, etc. 
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In order to test our system we have started with a very simple scenario which in-
volves three types of agents: 

• Volunteers: every agent represents a group of volunteers. 
• Doctors Without Borders (DWB): every agent is a unit of this international 

humanitarian aid organisation.  
• Hospitals: every agent represents a hospital. 

In our scenario there is a succession of disasters, each of which causes a different 
number of wounded. The agents attempt to form coalitions in order to aid and heal the 
wounded, and these coalitions can attempt to form institutions with the aim of im-
proving their teamwork. 

Within a coalition, each agent acts in its own way in order to fulfil the coalition’s 
objectives, whereas within the institution there are norms that regulate the agents’ ac-
tions and interactions in order to improve the teamwork and reduce the complexity of 
the system. This means the agents’ behaviour is more predictable. 

Each agent has been implemented with the Agent-0 language and has a mental 
state with beliefs, commitments and capabilities [10]. The agent’s behaviour is 
governed by commitment rules, which define the agent’s character in relation to the 
environment and other agents. At the moment we assume that agents share an OOTW 
ontology, but in the future agents will have to assimilate the ontologies through the 
adopted institution, in order to face specific problems. 

The coalition that is formed generates a coalition case that is a specification of the 
coalition and contains: the number of agents, the number of different roles, the 
distinct types of roles, and the coalition’s objectives. Then, a centralized CBR 
mechanism searches for the specification of the stored institution that adapts best to 
the present coalition case.  

To initialize the system some institution specifications must be introduced into the 
case base before starting up the system. Therefore, in the first CBR iterations the coa-
litions can reuse previous institution cases. 

We have been carried out two experiments with our system and this scenario: 

• First experiment uses the JADE/Agent-0 framework in the OOTW scenario. 
The system starts with a population of 12 agents: 5 volunteer groups, 5 DWB 
units, and 2 Hospitals. There is a succession of disasters and agents can at-
tempt to form coalitions. The coalition formation mechanism is very simple 
and based on grouping together the agents that share the objective: heal 
wounded. The coalition formation process has time limits, and every disaster 
causes a different and random number of victims. We have obtained an aver-
age of 55.38% saved victims, and an average of 9.8 agents per coalition. 

• Second experiment is the same as the previous one, except that institutions can 
be founded. The system also starts with a population of 12 agents: 5 volunteer 
groups, 5 DWB units, and 2 Hospitals. Then, there is a succession of disasters, 
and agents can attempt to form coalitions. In this experiment coalitions can 
turn themselves into institutions using a centralized CBR mechanism (the 
foundation phase mechanism). The coalition formation mechanism is the 
same, and each disaster also causes a different and random number of victims. 
We have introduced 4 institution cases into the centralized base to initialize 
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the system and facilitate first institution adoptions. In this case, we have ob-
tained an average of 56.7% saved victims, and an average of 9.2 agents per 
coalition. This is a small improvement with respect to the previous example, 
but it is not significant. We have worked with our own framework, our own 
scenario, and our own examples, so we need to compare our results with other 
platforms and systems in order to validate them.  The importance of these ex-
periments is to show that the foundation phase is feasible, and that the DEI 
lifecycle can be fully implemented. 

8   Conclusions and Future Work 

We have presented the notion of dynamic electronic institutions (DEIs), which from 
our point of view arise from the convergence of two lines of research: electronic  
institutions and coalition formation. We have introduced and conceptualized their  
lifecycle: 3F cycle (Formation, Foundation and Fulfilment). 

One of these three phases has been poorly studied in the past: the foundation phase. 
At this moment, we are focusing our work on this phase. In this paper, we have  
presented our CBR approach to the Foundation Phase.  

We are using the JADE/Agent-0 framework (modelling agents’ norms as commit-
ment rules) [10], and we are working on the OOTW scenario (Operations Other Than 
War). 

We have presented our first experiments and results, which are encouraging but not 
yet significant; they show that the foundation phase is feasible, and that the DEI  
lifecycle can be fully implemented. 

There are several open issues in DEIs. These include works on the institutions' 
adaptivity and on the dissolution process (fulfilment phase). 
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Abstract. When constructing multiagent systems, the designer may approach 
the system as a collection of individuals or may view the entire system as a 
whole. In addition to these approaches, it may be beneficial to consider the in-
teractions between the individuals and the whole. Borrowing ideas from the no-
tion of social construction and building on previous work in synthetic social 
construction, this paper presents a framework wherein autonomous agents en-
gage in a dialectic relationship with the society of agents around them. In this 
framework, agents recognize patterns of social activity in their societies, group 
such patterns into institutions, and form computational representations of those 
institutions. The paper presents a design framework describing this method of 
institutionalization, some implementation suggestions, and a discussion of pos-
sible applications. 

1   Introduction 

There are many approaches to developing multiagent systems. Agent-oriented 
software engineering takes a top-down approach, decomposing the problem domain 
into components that can be addressed by individual agents or groups thereof [12]. In 
artificial life, a bottom-up approaches focuses on overall properties emerging from the 
interactions of individual agents [16]. It may be beneficial to focus not only on the 
individual the whole, but rather on the interactions between the individual and the 
whole. Social psychology has taken a variety of perspectives on the individual’s 
relationship to the society [5, 18]. As an example of applying these different 
approaches, Dillenbourg, et al. [7] present a description of how changing the unit of 
study along the spectrum of individual to group changes the nature of educational 
research. This paper presents a technique for applying some of these concepts to 
multiagent systems, allowing the agents in the system to form computational 
representations of institutionalized actions. 

Social psychology examines the nature of the individual’s relationship to its soci-
ety. Different theorists have taken a number of different approaches in trying to de-
scribe the nature of this relationship between self and society. Mead argues that the 



 Institutionalization Through Reciprocal Habitualization and Typification 123 

self has no meaning outside of society, that the self only exists with any meaning as a 
response to and interaction with the generalized other [18].  Cooley introduced the no-
tion that the self is reflected in society in what he called the reflexive self or the look-
ing-glass self, arguing that our self-concept comes only from the impressions we get 
about ourselves based on others’ actions toward us [5]. Goffman posits that our social 
form is based on the manner in which we present ourselves [10].  Berger and Luck-
mann argue that the individual exists in dialectic relationship with society, and 
through this dialectic exchange the individual defines his or her own social reality at 
the same time that society is defining the individual [3]. More recent work synthesizes 
some of these earlier approaches. For example, Tice and Wallace present a case that 
even the reflected self is distorted by the lens of self-presentation, so that we see our-
selves not as others actually see us but as we think others see us [22]. Although the 
specifics of these approaches differ, they all place the individual in an exchange of 
mutual sense making with society, where the society and the individual are simulta-
neously trying to understand one another. 

This paper focuses on the work of Berger and Luckmann, specifically the social 
construction of reality [3]. This approach places the individual in a dialectic relation-
ship with society in which the individual experiences society both as an objective and 
a subjective reality. With society as an objective reality, the individual experiences 
society as a unified whole, an external entity that dictates the individual’s social real-
ity. With society as a subjective reality, the individual internalizes society, making 
sense of it by relating it to his or her own subjective experiences, and then acts on that 
subjective interpretation. By experiencing society through this dual nature, individuals 
can reciprocally typify patterns of each other’s actions and interactions to form insti-
tutions, which describe the behavioral patterns present in that society. This concept is 
related to some previous work that allows synthetic characters to form context-
specific emotional memories [23]. The present framework, however, places those 
memories in a broader institutional context rather than the context of interaction with 
a specific individual. There has also been previous work has been done in the area of 
electronic institutions [9]. This work uses electronic institutions as a way to specify 
the interactions and commitments between different agents in an open environment 
[6, 21, 24]. However, all these approaches focus on using institutions as a method of 
specifying agent behavior to assist in the creation of multiagent systems. The work 
described here uses institutions to recognize and reason about emergent patterns of 
actions in multiagent systems. 

This paper presents a framework for institutionalization that applies these concepts 
to multiagent systems, provides some aspects of an implementation, describes diffi-
culties and limitations that might arise in that implementation, and discusses possible 
applications in domains such as human-machine interaction, societal or behavioral 
studies, and analysis of multiagent systems. 

2   Social Construction 

As stated above, Berger and Luckmann’s social construction approach places the  
individual in a dialectic relationship with society [3]. In this dialectic relationship, the 
individual experiences society both as an external, objective reality and as an internal, 
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subjective reality. Through these multiple experiences of society, society acts to  
define the individual, while the individual simultaneously acts to define society. “So-
ciety is a human product. Society is an objective reality. Man is a societal product.” 
(p. 61) [3] 

It is important to note that these three moments of definition are indeed three dis-
tinct moments, but they are also three simultaneous and cyclical events. The events of 
the dialectic relationship between the individual and society are continuous and coin-
cident. This work focuses on the individual’s experience of the society both as objec-
tive reality and as subjective reality in the process of forming institutions. 

2.1   Society as Objective Reality 

One component of the individual experience is that of society as objective reality, 
where in the individual experiences society as an external entity. Society dictates cer-
tain norms and patterns of behavior in the form of institutions, to which the individual 
must subscribe. “The institution posits that actions of type X will be performed by ac-
tors of type X.” (p. 54) [3] The institution serve to dictate which types of actors take 
what types of actions. However, it also functions to give context to those prescrip-
tions, so that actions of type X are performed by actors of type X in the context of 
other types of actors performing other types of actions. These patterns of actions form 
institutions that dictate to the individual the patterns of action that are to be taken 
within the society. 

Consider the example of a courtroom trial.  One would not expect to see the bailiff 
overseeing the court atop the bench, the lawyers sitting in the jury box listening, and 
the judge transcribing the events.  The institution of a trial dictates different roles for 
different types of actors in the context of a trial. By knowing about an institution, ac-
tors in a situation know how to behave, and an individual can make sense of a situa-
tion. This leads to the individual forming its own impression of the scene. 

2.2   Society as Subjective Reality 

The other component of individual experience is that of society as subjective reality, 
wherein the individual goes through a process of sense making about the social occur-
rences around him or her. The individual attempts to understand societal activities 
based on his or her previous experiences, arriving at his or her own subjective inter-
pretation of society. The individual then acts based on this subjective interpretation, 
thus influencing society. The individual’s actions are then experienced as objective 
reality by other individuals. 

When the individual takes actions based on his or her subjective reality, the indi-
vidual is essentially presenting that subjective version of reality as an objective reality 
to other members of the society. The subjective reality is then confirmed or denied by 
the continued actions of others. Only when an individual’s subjective reality is con-
firmed by the actions of others, when an individual has the same conceptualization of 
its society as others do, is that individual is a member of the society. 
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3   Framework 

The main focus of this paper is to present a framework for institutionalization among 
autonomous agents based on some of these ideas from social construction. This 
framework builds on previous work in synthetic social construction [2], but rather 
than designing for a specific application this paper presents a general framework that 
can be applied to forming institutions in a wide range of multiagent systems. This sec-
tion describes the components of the framework and how they interact to allow agents 
to form institutions via their interactions. 

3.1   Habitualization 

Habitualization1 is the process by which actions that are frequently repeated with the 
same temporal relationships to one another are cast into a pattern. These patterns form 
groups of actions, so that an agent can reorganize its assessment of its own actions to 
treat these groups of actions individually or as a single unit. Any pattern of actions re-
peated at least once is habitualized to some degree, with those actions performed 
more frequently having a higher degree of habitualization. Habitualization is a non-
social process by which the agent recognizes the habituality of its own actions and 
thus requires no interaction with other agents. This is not to say that an agent does not 
habitualize actions it takes in conjunction with other agents. Quite to the contrary, 
habitualization is more beneficial in the company of other agents, as it works hand-in-
hand with typification, described below. 

3.2   Typification 

Typification is a process similar to habitualization, but rather than recognizes inter-
nally occurring patterns of behavior as in habitualization, typification recognizes ex-
ternally occurring patterns enacted by other agents. Typification allows an agent to 
observe other agents and determine what types of actions are typical of what types of 
agents, and what types of agents typically perform what types of actions. Just as any 
pattern of actions repeated at least once is habitualized to some degree, any observed 
pattern of actions creates some degree of typification. Typification is most important 
in that reciprocal typification, which entails two agents typifying each other’s actions, 
combined with habitualization leads to the formation of institutions. 

3.3   Institutionalization 

In the context of multiagent systems, an institution is a computational representation 
of a certain behavioral pattern implicitly agreed upon through the actions and interac-
tions of the members of a society to which the institution applies. Institutions are 
formed by means of institutionalization. 

                                                           
1 This is not to be confused with habituation, wherein repeated exposure to a specific stimulus 

decreases the degree or frequency of the associated response. 
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Institutionalization is the process by which multiple agents habitualized their own 
actions and reciprocally typify each other’s actions. Agent A habitualizes its own ac-
tions and typifies agent B’s actions, while agent B is habitualizing its own actions and 
typifying agent A’s. When agent A’s typification of agent B’s actions matches angent 
B’s habitualization of its own action and vice versa, an institution is formed. Alter-
nately, an agent can form an institution by observing and typifying the actions of 
other agents without actually participating in their interactions. The institution crystal-
lizes the repeated patterns of actions composed of actions taken by the various agents 
involved in those patterns. It gives context to individual habitualizations and typifica-
tions by placing them in conjunction with other habitualizations and typifications. 
These institutional patterns of actions describe the types of interactions undertaken by 
the agents in a system. 

Institutions serve a number of purposes. First, they allow agents to form computa-
tional representations of patterns of behavior. Those patterns may be analyzed by the 
agent itself or reported to human designers wishing to examine the nature of interac-
tions in a system.  Second, they provide a social learning mechanism. If a given agent 
observes other agents performing institutionalized patterns of actions, the agent may 
be able to learn those patterns of actions and participate in such patterns at a later 
time. Third, their predictive power can be used to inform action selection. Given a 
number of possible institutions that might fit the current events in which the agent is 
participating, the agent can choose its actions based on the institution that has the 
most beneficial outcome or leads other agents into a desirable course of action. 

Institutions serve to abstract away from the differences between specific occur-
rences to generalize about all instances of that pattern of actions. One important way 
in which they do this is by defining roles, sets of actions taken within the pattern of 
some institution. 

3.4   Roles 

Roles abstract away the differences between individual actors that act in specific 
situations to generalize about all actors that might perform a set of actions in a given 
institution. An agent fulfilling a role in an institution is not only “a particular actor 
performing an action of type X, but” is demonstrating a “type-X action as being per-
formable by any actor” (p. 72) [3] who fits the description of the role. This generaliza-
tion does not pigeonhole any actor who fits this description into only performing  
type-X actions in this context. Rather, it represents a trend that applies to most but not 
necessarily all agents and situations. The specific description of a given role is the set 
of other roles a performer of the given role is likely to assume.  For example, actors 
who perform role P in one institution are likely to also perform role Q in some other 
institution, so it is a reasonable conclusion that an agent performing role P will likely 
perform role Q, as well. 

4   Implementation 

Thus far, this paper has described a framework to allow agents in multiagent systems 
to form institutions based on habitualized and typified patterns of actions. This section 
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proposes an implementation outline for that framework and discusses what will be re-
quired for such an implementation. 

4.1   Pattern Recognition 

The key component to habitualization and typification is the ability to recognize  
patterns of actions that are repeated frequently with the same or similar temporal rela-
tionships to one another. While there has been much research done on pattern recog-
nition, many of the algorithms are complex and were developed for some specific ap-
plication domain, such as image, face, and object recognition; audio processing; or 
speech recognition. Current pattern recognition algorithms are not amenable to the 
patterns of actions and interactions being recognized in this framework. 

A number of approaches could be taken to the implementation of this component. 
One approach could combine some type of reinforcement learning [15], such as Q-
learning [25], with various prediction methods to determine which events frequently 
occur within temporal proximity to what other events.  Another approach could be to 
seed a pattern recognition algorithm with arrangements of certain types of events.  In 
this way, the pattern recognizer does not have to start from scratch but rather has a 
platform of known patterns upon which to build other patterns. However, this method 
requires a specific set of pre-made patterns and is not as open-ended in the patterns of 
behavior it will recognize. A third approach could be to form a pattern from any set of 
events that occur within close temporal proximity.  Once a pattern has been formed, 
the agent can determine whether or not the given pattern is an accurate or effective 
description for the events in its environment.  Methods for making this determination 
are discussed below in the section on pruning. 

4.2   Comparing Institutions 

The ability to compare a series of currently occurring events to a known set of insti-
tutions acts as a key component to this framework. It is this ability that allows an 
agent to determine if some known institution is being enacted, what agents are per-
forming which roles in this manifestation of the institution, and what the given 
agent’s role in the institution might be. There are a number of aspects that will be 
used to accomplish this. 

Below is described how institutions can be seen as a hierarchy, where large, com-
plex institutions are described as compositions of smaller, simpler institutions. This 
very naturally gives rise to a tree-like structure for the representation of institutions, 
possibly in a method similar to the one described by Alspaugh [1]. Even institutions 
that are composed only of simple events may be seen to have a tree structure, where 
the institution is the root and the events that compose it are the leaves. Comparing two 
institutions could be accomplished in part be calculating a tree-to-tree distance algo-
rithm [17] based on the tree-like representations of those institutions. 

However, institutions are described by more than the events that compose them. 
They are also described by the temporal relationships between those events. Ordering 
the branches in the tree left-to-right based on the temporal order in which the events 
begin gives a starting point for the tree-to-tree distance calculation. However, the 
temporal relations between each pair of events must also be examined, since two  
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institutions having the same tree structure may still be significantly different based on 
the temporal relations among their constituent events. 

One more aspect must be compared to determine the degree to which a series of 
currently occurring events matches an institution.  The actors performing the roles in 
the current manifestation of the institution must be compared to the characterizations 
of those roles. As stated above, a given role is characterized by the other roles that ac-
tors performing the given role are likely to take on. So for each role, there is a list of 
other roles, each with an associated probability indicating how likely a performer of 
the current role is to perform any one of a number of other roles. A similar list of roles 
and associated probabilities is maintained for each agent. When an agent is compared 
against a role it is performing, these probability matrices are compared, and their dif-
ference is the difference between the given agent and the role it is performing. How-
ever, there is a problem of scalability here, because each agent must carry around a 
probability matrix for each other agent of which it is aware.  It may be possible for 
these matrices to decay over time, so that after periods with little interaction two 
agents no longer keep detailed information about each other’s probability matrices. 
Similarly, the agent could perform pruning, so that rather than removing probability 
matrices at some given time interval they are removed based on the number and fre-
quency of interactions with some other agent. 

Another significant difficulty lies in determining to which institutions to compare 
the currently occurring events. Since this comparison will be a complex and likely 
computationally expensive process, minimizing the actual number of full comparisons 
will help keep the system scalable. One way to do this would be a heuristic determin-
ing which institutions to check based on their frequency of occurrence. The most 
commonly occurring institutions will be checked first, because the time spent check-
ing them will yield a match much more often than the rarely occurring institutions. 
Along these lines, the heuristic could also incorporate a starting sequence, a series of 
events that always occurs at the beginning of a manifestation of the institution. Com-
paring currently occurring events against this starting sequence would be far less 
computationally intense than comparing the entire institution and would allow the full 
gamut of institutions to be checked rather than just the most frequently occurring 
ones. 

4.3   Hierarchical Structure 

Once a series of events has been recognized as a manifestation of an institution, those 
events can either be treated individually or as a whole. If treated as a whole, this 
manifestation of an institution can be seen as a single event, one that could possibly 
combine with others to form another higher-level institution. In this way, large, com-
plex institutions can be formed from combinations of shorter, simpler institutions. 

It may also be beneficial to organize not only institutions but individual events into 
a classification hierarchy. For example, running, walking, swimming, and crawling 
are all types of locomotion. In certain institutions, the method of locomotion should 
not matter as much as in others. In an institution such as the transportation of materi-
als, it does not matter if an agent is using bipedal walking, caterpillar treads, or 
wheels, just that it is moving from one place to another while carrying some material. 
Using a super-event from which all these other sub-events inherit would allow any of 
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the sub-events to be used as an instance of the super-event. This enhances the flexibil-
ity of institutions and reduces the total number of institutions needed, since a single 
institution can describe an action that involves any type of locomotion rather than 
needing a separate institution for each type. 

4.4   Pruning 

In this framework, pruning is analogous to the maintenance of subjective reality, 
wherein the individual verifies his or her subjective reality by acting on it and then de-
termining if his or her actions are comprehensible to others. Institutions are monitored 
to determine how accurate they are as predictors and how frequently they are mani-
fest. Institutions that are inaccurate predictors or infrequently manifest are either re-
moved from the agent’s collection or decreased in the frequency with which they are 
checked. However, this creates a possible difficulty for special purpose institutions. 
For example, the institution of a wedding occurs very infrequently, and so we do not 
walk around on a daily basis trying to understand our interactions in terms of a wed-
ding. However, when we see a wedding, whether expected or unexpected, we have  
little trouble recognizing it as such. This example again brings up some of the chal-
lenges in selecting which institutions to compare against the currently occurring series 
of events. 

5   Limitations and Difficulties 

Some of the limitations and possible difficulties in this institutionalization framework 
were mentioned in the implementation section above. This section discusses two spe-
cific problems that may arise in the framework’s implementation and suggests some 
possible approaches to addressing these difficulties. 

5.1   Bootstrapping 

One of the features listed above was that of a hierarchical structure, that is, that insti-
tutions can be composed of other institutions. At the lowest level, institutions are 
composed of single simple events. However, if an agent is not aware of any institu-
tional structures, only of simple events, how does it bootstrap from simple events into 
basic institutions? 

One approach to solving this, mentioned above, is to seed the agent with some ba-
sic institutions, on top of which the agent can construct other institutions. Using this 
approach limits the institutions that an agent can recognize to those that are based on 
institutions foreseeable by the designer.  However, it gives more control and direction 
to the type of institutions that will be formed. 

Another possible method would be giving the agent a specific list of all the possi-
ble simple events in its environment and using a pattern recognition algorithm to de-
termine when these events occur repeatedly with the same temporal relationships to 
one another.  As mentioned above, this would require complex and flexible pattern 
recognition, but it would allow for more variability in the sorts of institutions that an 
agent could recognize. For example, events A, B, and C might frequently occur in 
close temporal proximity and always with the same temporal relations to one another, 
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but if the agent is only looking for patterns of events A and C as dictated by the de-
signer, the agent would not be able to recognize this new pattern of events and would 
not learn the institution that might lie behind those events. 

Both of the above approaches are possible solutions to the problem of bootstrap-
ping if the agent is in an environment in which simple events occur in a discrete and 
recognizable way, such as market simulations, auction environments, or operations 
other than war scenarios. However, what occurs if an agent does not even have 
knowledge of what events are possible in its environment? In a simulation or virtual 
environment, it is possible for an agent to have full knowledge about what events are 
possible within that environment before actually interacting with it.  Work is being 
done on activity recognition in open physical environments but has not yet been per-
fected in a general purpose form. Further details of this problem are discussed below. 

5.2   Granularity 

In very constrained environments, it would be possible to give an agent a specifica-
tion of what comprises an event. However, in an open environment, this is signifi-
cantly more complex. Consider an agent on a desktop computer observing the actions 
of the user. For simplicity’s sake, suppose that the only information about the user 
available to the agent is the input from the mouse and keyboard. In this case, what 
constitutes a single event? One press of a key? One click of the mouse? Any continu-
ous mouse movement in the same direction? Any set of inputs received within a  
specific temporal proximity? Figuring out exactly what comprises an event is a non-
trivial matter. 

Here it is possible to see the utility of having institutions that are composed of 
other institutions. In this example, we can allow simple repeated patterns of inputs to 
be learned as institutions. It may not make immediate sense to classify such activities 
as institutions, e.g., the institution of double clicking. However, groupings of these 
low-level institutions may be grouped into higher-level patterns, such as opening a 
file, cutting-and-pasting, or turning off the machine. In this way, institutions could be 
developed from the ground up. Such an approach could be applied to agents interact-
ing with users in the physical world. Basic sensory-motor level actions could be used 
to form basic institutions, which would then comprise higher-level institutions that 
deal with interactions with users or aspects of the world. 

6   Discussion 

Up to this point, this paper has presented a framework for applying some of the con-
cepts of social construction to multiagent systems, allowing them to form institutions 
in an adaptive and non-predetermined way. This section will discuss aspects of how 
this framework relates to other aspects of autonomous agents research. 

Many multi-layered architectures have been proposed for the design of intelligent 
systems.  In at least two of these [19] [20], there is a reflective layer that monitors the 
activities of the sensory-motor and deliberative layers. It is in this reflective layer that 
the above described framework would be implemented. As is apparent, the framework 
is not designed for motor-level action control, but rather to monitor actions and  
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interactions in order to form patterns describing those interactions. Once such patterns 
are formed, they may be referenced by the sensory-motor or deliberative to assist in 
guiding future actions. 

Another interesting question is that of embodiment or embodied action, which has 
application not only to autonomous agents but also to the broader fields of artificial 
intelligence, human-computer interaction, and many other disciplines. Traditionally, 
embodiment has been used to describe the way an agent is situated in its physical en-
vironment [4]. In recent years, embodied action has come to incorporate not only an 
agent’s physical environment but also its social setting and how these aspects of its 
environment change over time [8]. While there has been a good deal of work in the 
field of artificial intelligence on embodiment in the physical sense, there has not been 
as much work focusing on embodiment in the social sense.  The framework brings the 
concept of embodied interaction to bear on multiagent systems, giving agents a means 
to represent and reason about their social environment and the changes occurring 
therein. 

There are also several possible approaches in deploying this framework, depending 
on the purpose of the system. The framework was designed to be deployed in such a 
way that each agent in a system has its own set of institutions based on its subjective 
experiences of interacting with other agents. These institutions could be compared to 
determine if all agents in an interaction approach that interaction in the same way. 
Another possibility is setting up an observational system independent from all the 
agents’ interactions. This observer would determine what institutions are present in a 
system without actually interacting with it. However, this would require some modifi-
cation, because the observer is never required to act based on the institutions it forms 
and thus has no way of verifying the validity of these institutions. An alternate verifi-
cation here could be checking how well the observer’s institutions predict actions of 
other agents, then modifying the institutions based on the accuracy or inaccuracy of 
these predictions. 

7   Applications 

There are several possible ways in which institutionalization could be applied to mul-
tiagent systems. These include strategy negotiation, so that negotiated strategies do 
not have to be constantly renegotiated; determining societal norms and then finding 
behavioral outliers in societies; and user modeling to discover and facilitate commons 
usage patterns. Three possible applications are discussed in detail below. 

7.1   Human-Machine Heterogeneous Systems 

One of the main difficulties in deploying systems composed both of human and ma-
chine agents in the coordination of the two. This framework could provide a method 
for machine agents to learn patterns of interaction as institutions, facilitating interac-
tion with human agents. Another similar application is human control of systems 
composed of heterogeneous agents. If the agents are built with specific tasks in mind, 
delegating tasks to them is not necessarily a complex task. For example, miner robots 
are given the task of mining some ore; courier robots are given the task of moving the 
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ore; etc. However, if the system is composed of heterogeneous, general purpose 
agents, this task becomes more difficult. A human operator must sort through the dif-
ferent types of agents, or worse examine each individual agent, determine which 
agents are suited for a particular task, and assign that task to all the suitable agents. 
Using the framework described here, a different approach might be taken. The human 
operator could take control of one general-purpose agent, one that he or she knows is 
fit for a certain task, and perform the given task. During the performance of the task, 
the agent’s motor-level functions are controlled by the human operator, but its reflec-
tive layer is still monitoring its own actions, forming institutions that describe the 
tasks being performed by the operator. Once the task has been completed, control is 
returned to the agent, and the institutions learned by the reflective layer dictate the 
proper course of action. Furthermore, the computational representation of this institu-
tion could be supplied to all the agents in the system. Because the institution describes 
the actor in terms of an abstracted role, any agent suited for that role will perform it. 
Thus, the agents automatically determine which of them are fit to perform a certain 
task. 

7.2   Agent Co-learners 

Some work has already been done exploring the effect of artificial co-learners on the 
performance of human students [14]. However, the agents in these studies act in pre-
determined ways and do not adjust to the behavior of human users or other agents. 
The behavior and performance of co-learner agents has been shown to have a signifi-
cant effect on both the performance of human learners and their attitudes toward their 
co-learners [14]. A co-learner could adapt to the human user’s patterns of behavior, 
both attitudinal and performance-wise, so that the agent’s behavior would be relative 
to that of the human user. 

7.3   Analyzing Emergent Behavior 

Emergent behavior in complex systems has been the topic of some discussion [11, 13, 
26]. However, the presence and recognition of emergent properties are often subjec-
tive; it is up to the observer, often the system builder, to recognize when a pattern of 
behavior has emerged as a consequence of lower-level interactions. The framework 
described here could provide a method for determining when an emergent pattern has 
formed.  Furthermore, treating lower-level actions and interactions as the basis for in-
stitutions, institutions formed in this framework could be analyzed to determine how 
and possibly why some lower-level interactions caused certain behavioral patterns to 
emerge. 

8   Conclusion 

This paper presents a framework that allows agents in a multiagent system to form in-
stitutions based on their behavioral patterns and build computational models of those 
thereof. Institutionalization, the process of forming institutions, results from recipro-
cal typification and habitualization among a group of agents. Within these institutions, 
the patterns of actions performed by agents are described in terms of roles, which  



 Institutionalization Through Reciprocal Habitualization and Typification 133 

abstract away the differences between individual agents to describe which types of 
agents perform which types of actions and which actions are performed by what 
agents. Thus, the institutions form the basis for an agent’s model of the interactions 
occurring in its environment. This institutionalization framework has broad possible 
applications, ranging from human-machine interaction, to user modeling, to analysis 
of multiagent systems. 
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Abstract. Although, the software agent paradigm has been widely accepted,
there is still a problem with situating (implementing) concrete agents in real envi-
ronments. Agent is an abstract notion so that there is no straightforward mapping
of real entities like robots, spacecrafts or any other autonomous systems to agents.
An interesting discussion on this subject was done within the framework of LO-
GOS and ACT Agent Architecture in the context of ground and space systems,
see [10,11]. In the paper we discuss the problem of situating agents in open sys-
tems consisting of cognitive heterogeneous robots that are supposed to perform
jointly complex tasks. The starting point of the discussion is the archtecture of
the M-agent.

1 Introduction

Multi-agent systems have been studied for more than ten years. However, a satisfac-
tory technology for such systems creation has not been proposed yet. There are some
approaches (see [6] for more details), that attempts to define a flexible framework for
building multi-agent systems, but the research has not been completed, and the results
are not always applicable for real problems.

An idea of M-agents that arises as an extension of the concepts of object, process and
multi-model control systems ([4]) may be applied to development of distributed and
decentralized intelligent systems. In the paper a proposal of a formal definition of the
M-agent architecture, multi-agent world including a definition of agents, agents’ space,
agents’ environment and the relations between agents and environment, and among
agents themselves is presented.

The existing approaches (BDI architecture, Agent-0 etc., [8,9,6]) define some mod-
els of multiagent system, but according to the opinions of the authors there are some
troubles with their applications. Some of the main inconveniences are listed below.

– They take (as a base of considerations) a low level of abstraction of the problem so
that the proposed model of the agent architecture does not cover a wide range types
of agents and multiagent systems.

– The formalism proposed is not always appropriate (generic enough) for real prob-
lems (with its specific features) to be represented in the formal model.

� The work was done within the framework of MNiI project No. 3 T11C 038 29.

M.G. Hinchey et al. (Eds.): WRAC 2005, LNAI 3825, pp. 135–146, 2006.
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The proposed idea of M-agents may be considered as an extension of the object, process
and multi-model control systems concepts. It seems that it takes (as the starting-point)
properly defined abstraction of the problem that can be a base for the Agent Oriented
Analysis, Design and even Programming. In particular:

– The proposed approach makes possible to distinguish between a multiagent and
a non-multiagent system, and keeps a track of the development process to build
desired multiagent systems.

– The definition of the system consists of several levels of specifications. It makes
possible to apply this approach to a wide range of MAS with simple as well as with
complex agents.

– The proposed approach makes possible to use various formalisms (up to the choice
of the designer) to make a more detailed specification of the system. It is reasonable
for complex and large systems to be represented as multiagent systems.

The paper presents an introduction to the M-agent architecture and its application to the
description of the multiagent systems. The proposed approach, gives methods and tools
that make possible to define a multi-agent system for a given problem without using
any specific programming language.

2 Informal Introduction to the Concept of M-Agent

Let us consider some problem for which a multiagent system (MAS) is to be created.
To design a multiagent system and to build a multiagent model that solve the problem
we have to define: living space for agents, agents of several types, and the relations
between the agents and the living space as well as among the agents. The first step that
must be undertaken to put in order the multiagent system (world) is to specify: what is
an agent and what is not an agent. So the whole reality analysed from the point of view
of the multiagent system may be divided into two parts (see Fig. 1): environment - that
may be observed by the agent and represented by a corresponding model, and agent’s
mind - an area in which the agent builds and processes models of the environment. So
we can consider that a given agent a remains and acts in an environment called V . For
any created agent a the following notions are defined:

– strategies S (s - strategy, s ∈ S), goals Q (q - goal, q ∈ Q), and models of the
environment M (m - model, m ∈ M ).

– operation of the observation I , and operation of the strategy execution X .

The main idea of agent functioning is the following:

– The agent observes the environment and builds a model m of the environment in
its mind. For this purpose it uses the observation (or imagination) operation I .

– The agent forecasts its possibilities using the strategy s. By applying the strategy
s to the model m it obtains the model m′ = s(m) of the modified environment.
Then, the agent compares (in its mind) the models m and m′ using the function q
that determines the goal of agent functioning. It serves to select the best (from the
point of view of the goal g) strategy s∗.
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Fig. 1. Principle of the M-agent architecture. I - imagination operation, X - execution operation,
m, m′ - models of the environment, s - strategy, q - evaluation function, ev1, ev2 - events taking
place in the environment, evx - event produced as the result of the realization of the strategy s.

– If the evaluation (comparison) of m and m′ is satisfactory, the agent realizes the
selected strategy s∗. The realization is represented by operation X - execution:
V ′ = X(s, V )

Therefore, the first approach to the algorithm of a given agent may be expressed in
three steps:

1. Observation - creation of the model m of the environment V : m = I(M, V )
2. Decision - selection of the optimal strategy

s∗: q(m, s∗(m)) = maxs∈S q(m, s(m))
3. Action - realization of the optimal strategy s∗ in the environment V : V ′ =

X(s, V )

The whole decision making (agent’s reasoning) is carried out by processing the models
of the environment in the area called agent’s mind. We are unable to represent the
”agent’s mind” in the model m. It means that it is impossible that one may think how
she/he is just thinking. The starting point to the agent oriented approach may be derived
from the Object Oriented Analysis and Design and expressed in the following sentence:
”you are an agent, you must get along by yourself in the environment” ([6]. This is a
useful starting point to define agents of the multiagent system within the framework of
M-agent architecture.

More formal definition of the M-agent architecture is following. Let a denote an
agent, and A denote a set of agents (called the agent configuration) that are in the
MAS;(a ∈ A). There may be several types of agents in the MAS. Then, ag

i denotes an
agent ai of type g.

The definition of the MAS environment V is as follows. Let E denote a space of the
MAS - living space for the agent of the system. An environment V is described by the
triple:
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V = (E, A, C) (1)

where C - connection (binding) between agents A and agent space E. C may be defined
as the location of agents in the space.

In some practical cases we may use a simplified version of the environment in which
we consider only the part of the environment V that may be observed and modified
by agent a. This environment is called ”the environment from the point of view of the
agent a” and is defined as:

Va = (E, Aa, Ca) (2)

where Aa ⊂ A - a set of agents that may interact with the agent a, Ca - connection
between agents Aa and the space E. The living space of agents may be defined by
different ways suitable to a given application. We can consider a more complex model
of M-agent architecture in which the agent is defined in the following way (see Fig. 2):
Agent a, (a ∈ A) may be described as a 9-tuple:

Fig. 2. M-agent architecture

a = (M, Q, S, I, X, L, m, q, s) (3)

where L - agent’s adaptation (learning) operation (see [6] for details), m - a model of the
agent’s environment, M - a set of models of the environment (configuration of models)
representing agent’s knowledge about the environment, (m ∈ M ), and q denotes a goal
of the agent a defined as follows.

q : M × M −→ � , q(m, m′) ∈ � (4)

where: m - an agent’s model of the environment, m′ - model of the (predicted) new
modified environment, � is the set of real numbers,
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Q - a set (ordered) of agent’s goals called configuration of agent’s goals (q ∈ Q),
s - a strategy of the agent a (s : M −→ M , m′ = s(m)), S - a set of agent’s strategies
called configuration of strategies, (s ∈ S),
I is agent’s a observation operation defined as follows.

m = I(M, V ) (5)

X - agent’s a strategy execution operation defined as

V ′ = X(s, V ) (6)

where m ∈ M , s ∈ S, V = (E, A, C), V ′ - a new environment (of the agent a) created
due to the execution of the strategy s by the agent a in the environment V .

The agent acts according to the following algorithm (see Fig. 2):

1. Start - the agent’s creation:
(M, Q, S, I, X, L, m, q, s), and its location in the environment: V = (E, A, C),
then go to 2.

2. The agent looks around and builds the model of its environment: m = I(M, V ),
then go to 3.

3. Selection of the best strategy s∗ (that may be adopted and executed):

q(m, s∗(m)) = maxs∈S q(m, s(m)) (7)

go to 4.
4. Execute selected strategy s∗: X(s∗, V ) = V ′; then go to 5.
5. The agent looks around and builds the model of its new environment: m′′ =

I(M, V ), then go to 6.
6. If there is considerable discrepancy between m′ and m”, then start an execution of

learning operation L to realize adaptation to the environment. Next go to 3.

3 Agent’s Model with Multiple Profiles

In some cases we may observe that beings alter (modify) their behavior as if they are
changing their point of view. This modification may be considered as a new model of
he M-agent described above. In such a case we may extend a model of an agent and
consider it as multiprofile M-agent architecture. Each profile is an M-agent model. The
agent observes the environment in each profile, and a final decision is made upon the
results from each profile (see Fig. 3). Hence, we can consider an agent having several
profiles:

a = (a1, a2, ...ai...an) (8)

where ai is defined as:

ai = (Mi, Qi, Si, I, X, L, mi, qi, si) (9)
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Fig. 3. A concept of the multiprofile M-agent architecture

The configurations Mi, Qi, Si are different and specific for each profile. For each profile
(say i) its own strategy configuration Si, models’ configuration Mi, and goals’ configu-
ration Qi have been defined. The operations I (observation), X (execution), L (learning)
are common for the all profiles of the multiprofile agent.

The observation function I of the agent is defined as

(m1, m2, ...mi, ...mn) = I(M1, m2, ..., Mi, ..., Mn, V ) (10)

where for all i (1 ≤ i ≤ n) : mi ∈ Mi

In every profile the agent finds the optimal strategy s∗i . The final decision to realize
the strategy s is made by the agent with the use of the decision function U:

s = U(a1, a2, ..an, s∗1, s
∗
2, ...s

∗
i , ...s

∗
n) (11)

The selected strategy s is realized by the agent in the environment: V ′ = X(s, V )

4 Planning

We can consider application of the proposed M-agent architecture to the planning op-
eration preformed by agents.
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Plan PL is defined as a sequence of strategies:

PL =< s1, s2, ...si, ...sn > (12)

where ∀(1 ≤ i ≤ n) si ∈ S.
Since strategies are function (from M to M ), they may be composed. The composi-

tion s◦s′ means the sequential execution of the strategies s′, s. The plan PL is realized
as a composition (sequential execution) of the strategies:

mn = (sn ◦ sn−1 ◦ ... ◦ s1)(m) (13)

where m is the initial model of the environment whereas mn is the final forecasted
model of the environment after an application of the adopted plan PL (see Fig. 4).
Having plan < s1, s2, ...sn >, the agent may realize it in the environment. The realiza-
tion may be defined in the following recursive way.

Fig. 4. Schema of a planning process in the M-agent architecture

X(V, < s1, s2, ...sn >) = X(X(V, s1), < s2, ...sn >) (14)

Let Vn denote the result of the plan realization, i.e., the final state of the environment.
After realization of the plan, the agent can build a model (m′

n) of the final environment
Vn in its mind (m′

n = I(M, Vn) using the observation function I . If the discrepancy
between the forecasted model mn and the observed model m′

n is not considerable, a
new strategy s equivalent to the plan < s1, s2, ...sn > (i.e., s = sn ◦ sn−1 ◦ ... ◦ s1) is
created. This may be considered as a case of the learning function of the agent.

The planning operation may be enriched with the milestones control system. In
this case the agent observes also intermediate results of the plan realization, not only
the final state of the environment (see Fig. 4). So that the plan i.e. the sequence <
s1, ...si, ...sn > is provided with inserted milestones. The role of the milestone is played
by marked strategies (for instance i). After execution of this ”milestone strategies”, the
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agent observes the environment and builds its models mi”. Then, it compares the fore-
casted model mi with the one obtained from the observation (mi”). The discrepancy
between these models serves to decide whether the plan is continued or stopped (i.e.
modified or abandoned).

5 Negotiation

Using M-agent architecture we may analyze a negotiating process from the agent’s point
of view. We can distinguish between simple negotiations and more complex - planning
negotiations.

In the case of simple negotiations (see Fig. 5) one agent - the agent ”b” wants (taking
its goal qb into consideration) to perform its own strategy sb. Agent ”b” would like to
have the agent’s ”a” agreement for that.

– For this purpose the agent ”b”, sending appropriate information, presents to agent
”a” the state of the current environment (as it was observed by it, i.e., mb) and the
forecasted model of the environment resulting form execution of the strategy s, i.e.,
m′

b.
– The agent ”a” using acquired information, builds in its mind the models (mb)a and

(m′
b)a which are its own version of models mb and m′

b of the agent ”b”.
– The agent ”a” evaluates the correctness of the proposed issue model (mb)a and the

changes in the environment using the forecasted model (m′
b)a. For this purpose it

uses its own goal qa.
– If the changes are suitable for the goal of the agent ”a” it agrees to the actions of

the agent ”b”, if not, the agent ”a” may prepare a new proposal for the agent ”b” in
the same way.

– An agreement closing negotiations is achieved when each agent accepts (taking its
goal into account) the changes in the environment.

Agents may create a more complex solution using planning negotiations that may by
carried out in the following steps (see Fig. 5):

– Agent ”b” adopts strategy sb that is convenient for the realization of its goal and
sends information about it to agent ”a”.

– Agent ”a”, considering the proposed strategy (sb)a, tries to find its own strategy sa,
which, performed with the proposed strategy, is good from point of view of its goal
qa, and then informs the agent ”b” about it.

– Agent ”b” evaluates its own strategy sb and the proposed (sa)b using its own goal
qb. If the evaluation is successful the negotiations are completed with a construction
of a common plan < sb, sa >. If not, the negotiation process is continued to find a
new solution by means of new proposals given by the agents.

If the execution of both strategies (in a given order) is useful for the agents ”a”
and ”b”, the strategy is stored by the agents as a common new strategy realized in
cooperation. This may be considered as an element of learning operation.
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Fig. 5. Schema of the process of a simple negotiating process and schema of the process of a
planning negotiation in the M-agent architecture

6 Agents and Robots

The proposed M-agent architecture may be used for the taxonomy of multiagent sys-
tems depending on the nature of the environment V . If the environment V = (E, A, C)
is a cyber-space, MAS contains software (possibly mobile) agents. If the environment
is a real-space, there are devices (like mobile robots) that may communicate and in-
teroperate. Designing MAS for such kind of environment is not easy. The immediate
mapping of a robot into a single agent is not a good solution for complex robots that are
supposed to perform sophisticated tasks in open, a priori unknown, environments.

Depending of the complexity of the models of the environment we may distinguish
the following cases. If the environment is simple and fixed, then also agent can be sim-
ple and built according to the reactive architecture. If, however, the environment is com-
plex, the agent must be cognitive so that its mind should according to the deliberative
architecture.

A single agent may be associated to a single robot, see a) in the Fig. 6. However, the
(software) agent need not to be installed on the robot’s onboard computer. The agent
may be situated in the cyber-space (as a process running on a remote host) controlling
the robot from the host, see b) Fig. 6.

Hence, there are at least two possibilities. The first one is that robot is an intelligent
autonomous being, and agent is its (optional) extension in cyber-space. The second
one is that robot is an intelligent autonomous being, and an agent (or even a group of
software agents) is its twin shadow in cyber-space processing the data from the robot
and supporting robot’s decision making.

Following this idea, we may say that robot (considered as autonomous intelligent
being) is in the cyber-space as a software application (M-agent), whereas the real robot
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Fig. 6. Situating agents and robots in real-space or in the cyber-space

Fig. 7. Robots in the real-space as services for multiprofile M-agents in the cyber-space

is reduced to a device performing a specific service, and changing, in this way, the real-
space, see c) Fig. 6. Moreover, a multiagent system in the cyberspace may use robots
(as services) situating in the real-space, see d) Fig. 6.

Finally, multiprofile M-agent situated in the cyber-space may control a multi robot
system, see Fig. 7. In this case each profile is responsible for controlling separate service
performed by a device (robot) in the real-space.
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For example, one profile is responsible for processing data coming from a camera
of one robot, whereas the second profile is responsible for controlling the motion of
the second robot. These two profiles are interrelated because one profile is responsible
for controlling the robot that is scanning the environment (e.g., looking for suspicious
and possible dangerous items), whereas the second profile is responsible for controlling
the second robot that has ability do take a dangerous item and transport it to a safe
place. Hence, there must be cooperation and coordination between these two profiles
(consisting in selection and execution of a common strategy) in order to realize such a
complex task.

7 Conclusions

Some new ideas concerning agent and multiagent systems in the context of robotics
were presented. These ideas are based on our long term research and experiences in
agent theory and technology, see [4,5,6] as well as in Web services and Semantic Web,
see [1,2,3]. Although the ideas seem to be clear, there is still a lot to be done to pro-
vide a sound theoretical framework for them, and what is more important to create a
technology that realizes and verifies them.

The limit of space does not allow to present details of our Service Oriented approach
to robot and multi-robot architecture. This will be done shortly in our next paper.

There are ongoing implementations of the architectures of multi-robot system, pre-
sented in the previous section, as a part of the project Interoperability of mobile and
cognitive devices supported by the MNiI grant No. 3 T11C 038 29.
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Abstract. Research done during the last three years has studied the emersion 
properties of Complex Adaptive Systems (CAS).  The deployment of Artificial 
Intelligence (AI) techniques applied to remote Unmanned Aerial Vehicles has 
led the author to investigate applications of CAS within the field of Autono-
mous Multi-Agent Systems.  The core objective of current research efforts is 
focused on the simplicity of Intelligent Agents (IA) and the modeling of these 
agents within complex systems.  This research effort looks at the communica-
tion, interaction, and adaptability of multi-agents as applied to complex systems 
control.  The embodiment concept applied to robotics has application possibili-
ties within multi-agent frameworks.  A new framework for agent awareness 
within a virtual 3D world concept is possible where the vehicle is composed of 
collaborative agents.  This approach is considered for application to the com-
plex tetrahedron structure system from NASA Goddard Space Flight Center 
(GSFC) developed under the Autonomous Nano Technology Swarm (ANTS) 
program.   

1   Introduction 

This paper describes the development of an approach to apply a CAS Agent-based 
virtual framework to a model of the NASA Goddard Space Flight Center (GSFC) 
tetrahedron structure developed under the Autonomous Nano Technology Swarm 
(ANTS) program and the Super Miniaturized Addressable Reconfigurable Technol-
ogy (SMART) architecture program [1].  The above projects, directed under Dr. Ste-
ven Curtis, represent an innovative set of novel concepts deploying adaptable, self-
organizing structures composed of many tetrahedrons.  The current technology pro-
gram is pushing current applied Agents Concepts to new levels of requirements and 
adaptability.  The proposed research discussed within this paper is an independent 
effort conducted through Nova Southeastern University (NSU) for a dissertation re-
search effort to be conducted by the author under direction of Dr. Jim Cannady.  The 
proposed research work is being undertaken because there is a need to advance the 
understanding of autonomy and the control and communications for multi-agent sys-
tems applied to complex systems. 

The GSFC TETwalker (Figure 1) will be modeled using the Open Dynamics En-
gine (ODE) Software Development Kit (SDK) for simulation of the mechanical  
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properties of the TETwalker structure [2].  The generic modeling of the structure will 
then be incorporated into a virtual 3D graphics simulation.  This simulated environ-
ment will provide the testing ground for application of CAS techniques meshed with 
the proposed framework.   

 

Fig. 1. NASA TETwalker prototype assembly that will provide the rough model prototype 
http://t2www.nasa.r3h.net/images/content/111408main_tetwalker_4.jpg  

The achievement of autonomous systems has mainly concentrated on individual 
systems such as robots, ground vehicles, Unmanned Aerial Vehicles (UAV’s), un-
derwater vehicles, and software agents [3], [4].  Autonomous multi-agent systems 
have remained difficult to implement to date due, in part, to the increases in complex-
ity over a single complex system [5].  Single autonomous systems have often been 
complex in nature and research continues in order to bring enhancement and auton-
omy to those systems [6], [7], [8].  The dynamic environment and external forces that 
affect these complex systems have contributed to the complexity of these systems and 
the obtainment of autonomy in these systems [9], [10].   

1.1   Simplifying the Agent Approach 

Standard applications of agent technology involve agents that must be adaptable, 
intelligent, and interactive with the environment where the agent software is applied.  
This level of growth in agent capabilities has often evolved to requirements of a com-
plex system within itself.  The agents must possess more advanced sensory inputs to 
meet the requirements of dynamic environments and the agents must also possess an 
increased computational intelligence capability not easily achieved given the current 
state of microprocessor horsepower. 
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The proposed research will address the issues of complex systems from the per-
spective of CAS.  This perspective looks at the entire world of the multi-agent’s inter-
action.  This includes the multi-agent body (robot, TETwalker, vehicle, etc.), the 
dynamic physical world the agent body must operate in, and the interrelation between 
the agents and that environment.  Drawing from previous work on the obtainment of 
knowledge (Figure 2) the agent will hold a degree of relationship with itself, other 
agents, and eventually overall behaviors and goals. 

 

 

Fig. 2. Standard Agent Control with integration of knowledge “sensing” gained from past 
performance (Dufrene 2004) 

The relationship held plays an important role in the communication architecture 
that will be developed in the proposed framework.  To emulate the basic structures 
discussed in current CAS research the agents must be built with as little intelligence 
as possible.  The data passed to each agent will adjust and contribute to the  
Sense, Rules, and Action sequences in order to collect what we can call knowledge 
(Figure 3).  Information shared with higher order agents must incorporate the com-
munication channels to allow the passing of data to the agents that would react to the 
information and thus cause the action required or desired.  If done successfully the 
framework would include a relationship between the lower agents and the 3D virtual 
world that could allow the vehicle to converge on an imaginary point in the virtual 
world much like Particle Swarm Optimization (PSO) conversion, Cellular Automata 
(CA), or fractal conversion. The benefit of such a framework would allow the virtual 
spot to also exist within the vehicle itself or represent an agent node.  The degree of 
membership between the Agents and the environment, system, tasks, and other 
Agents will change as the TETwalker interacts with its structure and environment 
(Figure 4).   
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A 
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Action Out

Agent A 

Knowledge
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Fig. 3. Venn diagram denoting knowledge building incorporated in information and data passed 
to Agents and their definitions  

The CAS techniques studied have presented a common core element that involves 
the emersion of CAS properties.  That element is the inclusion of randomness and the 
degree of randomness.  This research will investigate the effects of randomness as 
part of the equation of CAS properties.  As in nature and biological colonies, the ran-
dom interactions that take place in CAS play an important role in evolving properties 
that contain higher degrees of capabilities than the initial components of the system. 

1.2   Benefits of Simplifying the Agent Approach 

Why move beyond typical control schemes?  A typical controls problem benefits 
from the use of proportional control, integral control or Proportional Integral Deriva-
tive (PID) control methods. An Adaptive Control Scheme is used to allow one or 
more of the control parameters to change in real time, which allows for adjustment to 
limited dynamic conditions. These types of control schemes have excellent reliability 
and predictive behavior when operating under their designed control margins.  All of 
the typical control schemes require the same reductionism techniques used in science 
today in order to successfully model control parameters.  This requires the system 
being reduced into smaller parts that are controllable and solvable.  Complex systems 
that require adaptation to environments that are dynamic will require increased capa-
bilities and real time adjustment of control margins.  If you will, these future complex 
agents systems will require a Goal Oriented Distributed Intelligence (GODI).  It is 
conceivable that CAS may have properties that are beneficial to the development of a 
GODI architecture.  
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Fig. 4. Definition of TETwalker Agents and Degrees of Membership with Environ-
ment/System/Tasks/Agents 

Some of the benefits of applying CAS techniques are the emersion of a higher or-
der of capability, adaptation, self-organization, self-configuring possibilities, and an 
evolution of control through the use of simple agents.  This process exists in nature 
and biological processes.  The struggle in CAS research application is predicting the 
emerged property or even the property desired.  It is suggested that the development 
of this framework can provide a novel control strategy that can be applied to the 
GSFC TETwalker that allows the growth and adaptation to multi-tetrahedrons 
through relationships with each agent and the virtual dynamic world built for simula-
tion.  These agents would require a simpler intelligence, or GOI, and therefore  
provide a more obtainable application timeframe for the control of the tetrahedron 
structures.  

The implemented procedure for getting robotic vehicles to operate and achieve 
autonomy has been accomplished by breaking down the whole into smaller parts and 
controlling each part each step of the way.  This meticulous control scheme has com-
monly been referred to as giving too much intelligence to the system.  How much of 
our expertise can we pour into a controlled system?  The objective of researching and 
applying natural intelligence is that the intelligence will emerge to the situation and a 
meticulous control scheme will not be needed.  The natural systems in our world and 
universe show signs of an emergent control or order and even self-organization [11], 
[12].  The application of those properties and others found in CAS can bring an un-
folding of a ‘natural intelligence’, not necessarily similar to humankind but one of 
system oriented and goal oriented objectives [13].  Complex systems have emergent 
properties that can be beneficial to this research and the complexity of a framework 
for achieving the collaboration [14], [15], [16]. 
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2   Background Research 

Research and achievements in autonomous operation of complex systems, like robot-
ics and UAVs, has been ongoing for many years.  Government organizations, univer-
sities and industry have ongoing research and projects to develop state of the art 
autonomous vehicles [17].  Federal and military institutions contribute a wide variety 
of research dollars and future dependencies towards autonomous operation and navi-
gation [18], [17].  The United States Congress has funded the military’s UAV projects 
out to 2015 covering their semi-autonomous UAV’s.  Bone and Bolkcom presented 
the military UAVs in use today and outlined the major UAVs in development for 
future deployment [18].  The control methodologies applied to walking robots and 
robotics to date has resulted in small advancements in capabilities [4].  A specific task 
implemented in a controlled environment or system has fully been accomplished [6]. 

Each application of agents to any system requires a detailed understanding of the 
system components and interactions with other systems components and the environ-
ment in which the system must exist.  The typical reductionism method of science 
does not apply with complex systems [12].   

In order to address the problem of autonomy and multi-agent communication and 
control, studies from many disciplines will be investigated.  There is a rich collection 
of prior research considered important to this research.  Each application of agents to 
any system requires a detailed understanding of the system components and interac-
tions with other systems components and the environment in which the system must 
exist.  The typical reductionism method of science does not apply with complex sys-
tems [12]. 

The development of a valid framework for application to complex systems needs to 
include research in the area of autonomy beyond the typical expert systems and con-
trol methods.  Holland discussed how the complexity of CAS contributed to the diffi-
culty of understanding these systems and especially understanding how properties can 
emerge from these systems [12].  He outlined how simple laws could be studied that 
instead brought about the emergence of traits or properties that were of desirable 
outcome.   The concept Holland discussed of something more evolving from simple 
laws or rules will be the driving goal of this literature research.  Systems, architec-
tures, algorithms, robotic frameworks, and research that show evidence of CAS prop-
erties emerging are of interest in the development of a framework or approach that 
will allow autonomy in multi-agents to emerge. 

Holland discussed his understanding of complex adaptive systems and the hidden 
order in CAS as a separation of CAS into seven basic elements that includes three 
mechanisms, which he discloses as primitives, and four properties [11].  These 
mechanisms and properties allow the use of agents in building the model.  The three 
mechanisms are tags, building blocks, and internal models.  The four properties are 
aggregation, flows, diversity, and non-linearity.  The key concepts from Holland are 
the interactions of the agents with each other and their environment.   This appears to 
be a new way of looking at CAS.  The important point drawn from this work is the 
fact that the agents can be set up to interact with the environment and have other 
properties emerge as a result.   
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2.1   Intelligent Systems (IS)  

The reality of an intelligent system simulating human capabilities is still just a dream 
but there is ongoing research taking place.  The American Institute of Aeronautics and 
Astronautics (AIAA) recently hosted a technical conference on IS to bring together 
research from the field of study [19].  The AIAA noted the benefit of the application 
of biological and cognitive systems for the efficient solution of complex problems. 
They also note the increase of IS technology applications in space and aeronautics.  
They realized the complexity involved with IS and a need to understand more clearly 
the logic, process, and information required to make systems safe efficient and pro-
ductive.  The conception, discovery, and reasoning with knowledge and information 
that IS technologies collect, evaluate, organize, and communicate were noted as im-
portant criteria to push the human-machine envelope of capability.   

The objective of the AIAA technical conference in IS was disclosed as the need to 
enable an understanding of the history, concepts, and benefits from the applications of 
IS to aeronautics and space.  Intelligent systems are required to advance the explora-
tion of space and this advancement requires the application of new concepts in IS to 
provide safe and efficient space exploration [1].  

Curtis et al. are looking into future space exploration [1].  The intelligence in sys-
tems and the interactions of these systems with astronauts needs development beyond 
our current understanding and capabilities.  Their work in pushing the envelope of 
technology to expand exploration capabilities has been a key research in the NASA 
space initiatives for the past 5 years. 

2.2   Complex Adaptive Systems (CAS)  

Many researchers and authors have written books that explore the areas of complexity 
and complex systems and the benefits of what has been learned and applied [11], [14], 
[15], [16].  These benefits can have a direct application to research in the area of 
autonomy and multi-agent complex systems [12], [13], [20], [21].  There are many 
algorithms that have been developed drawn from natural complex systems, which 
could also have useful application to this research [22], [23].   

Flake takes CAS and provides simple explanations and examples [20].  Flake looks 
at simplicity as the selection of sub elements or systems that can be compressed.  
Complex systems would therefore be complex and not simple or compressible.  Flake 
covered complex systems, fractals, chaos, complexity and simplicity.  Of particular 
interest in his work is the chapter on adaptation based in biological systems.  Similar 
to many research papers presented in this paper, the idea that experience with the 
environment through acquired traits and learning is becoming a requirement for the 
adaptation of systems. 

2.3   Artificial Intelligence (AI)  

The techniques used in applications of AI towards development in autonomous vehi-
cles have been advancing rapidly by including hybrid combinations of conventional 
engineering disciplines and AI techniques [6], [4], [8].  The consideration of Artificial 
Intelligence and CAS will be closely related for the scope of this research.  Other 
emergent systems, such as Cellular Automata (CA), are currently available to research 
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and apply towards emerging needed qualities [24], [25].  CA represents a sort of sim-
ple intelligent rule system that evolves the rules into what appears to be intelligent 
actions or at least an intended outcome. 

2.4   Intelligent Agents (IA)  

The application of agent software has strived to represent humankind to some degree 
of intelligence.  This representation has grown from simple task completion requests 
to combinations of intelligent autonomous task completion.  Wooldridge discusses the 
rationality of agents operating under a Belief-Desire-Intention Model [25].  The au-
thor clarifies and bounds autonomy simply as the agent operating independently.  The 
strengths in Wooldridge’s arguments are advancement of communication and coop-
eration abilities among the agents.  The problem solving capability is similar to a team 
of individuals working cooperatively on difficult problems to obtain a solution that no 
one individual could solve.  This approach represents a logical application of addi-
tional resources to overcome stagnate problem solutions or dead-end thinking.  

Progressing agents towards multi-agent systems increases the complexity of the 
systems.  The objective of getting the desired outcome or the obtainment of a specific 
goal becomes major challenges with multi-agent systems.  The cooperation and com-
munication discussed by Wooldridge and others become important variables in the 
formula for successful completion of objectives. 

3   Research Goals 

The goal of this research is to develop a framework and approach to achieve collabo-
rative autonomy in multi-agent systems and demonstrate its utility by applying the 
framework to a complex system – TETWalker.  The application of this framework 
should allow the agents to achieve a level of autonomy.  A single complex system, the 
TETwalker, will be chosen as the test platform and the framework will be applied to 
the system after the components are divided into multi-agents.   

Collaborative autonomy is defined as the cooperative communication and work ac-
complished by the individual agents obtaining a collective goal.  Each individual 
agent will have specific individual goals to accomplish and also participate in a higher 
goal that would require collaboration among the multiple individual agents.  The 
autonomous actions of the collective individual agents will need to obtain the higher 
order autonomy required by the complex system.  The collaboration required to con-
trol the TETwalker and walk the system similar to a robotic vehicle is not understood 
at this time and requires investigation. 

Multi-agent systems consist of individual systems that have the multi-agent frame-
work distributed within the system by multiple agents.  With the achievement of this 
level of application, the framework can be expanded to multiple systems.  The level 
of autonomy that will be achievable is not known at this time.   

This research and framework can be measured by directly applying the framework 
to a simulation either of complex systems or through a simulation of multiple robots 
or multi-agents.  Given a simulated robot such as the TETwalker, can the robot walk 
once the framework of multi-agent communication is applied?  In essence, given a 
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complex system, can a small set of laws or rules be applied to achieve a collaborative 
approach to autonomy?  The complex nature of applying a multi-agent approach is 
not known at this time.  If a simulation proves the framework is successful, the re-
search may stop at that point with the collection and analysis of the data under several 
repeated test setups.  If physical robot systems are available and an application can be 
made, this approach may also be used to measure the benefits but this research does 
not depend on the physical application. 

This research will also investigate the use and applicability of merging some of the 
properties of (CAS) such as emersion, adaptation, self-organization, evolution, 
autonomous agents, learning, and Artificial Intelligence (AI). The security of the 
agent communication will also be addressed during this research to help understand 
the consequences of disrupted communication. 

The issues that face researchers and designers today of the applications of CAS tech-
niques will be encountered and an understanding of those issues will evolve.  Through 
this research, it is hoped that the applicability of merging several of these features and 
knowledge management techniques into a hybrid system can bring some understanding 
from the collaborative autonomy witnessed in natural multi-agent systems.   

3.1   Tasks and Objectives  

The current objectives are outlined as a list of tasks.   

• Continue exploration of current research in CAS and Multi-Agent applica-
tions 

• Develop the TETwalker model within a Graphical User Interface (GUI) that 
allows the retrieval of information from the physical model. 

• Develop the model into an object that can interact within a 3D virtual world 
simulated on a computer.  Exploration of 3D graphics programs may provide 
enough resolution to successfully operate the TETwalker model. 

• Build a simulation where the interactions between the simulated world model 
and the TETwalker model provide a realistic account of collision detection, 
physics properties (gravity, friction, force, etc.) and time. 

• Design the software and agent algorithms in a way to allow the inclusion of 
several CAS techniques.  This will allow trying new CAS algorithms among 
the agents to develop the multi-agent communication framework.  

• Implement the current design objective of robotic vehicle awareness and 
identification with the dynamic environment.  The objective of providing a 
virtual point in the 3D space relative to the vehicle will be sought.  This 
methodology should provide an attraction point for the agent algorithms to 
converge towards or diverge from in the simulation.  Degrees of Membership 
with other relationships will also be added during this implementation. 

• Finalize the multi-agent communication framework design that can provide a 
broad application to wide problem domains.  Ease of use, simplicity, and the 
emergence of CAS properties such as collaboration, adaptation, and progres-
sion towards goal obtainment.  These are several of the desirable properties.  
Others include adaptability and expandability that include the expansion from 
the four node TET model towards the twelve node TET model and beyond. 
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• Run simulation scenarios on the algorithms to test the walking or exploration 
gaits provided by manipulation of the agent behavior, communication, and 
goal obtainment. 

• Record and plot data on the effectiveness of several gaits and simulated ex-
plorations. 

• Publish the results in the final dissertation report. 

3.2   Preliminary System Analysis  

The current TETwalker system can be analyzed from many different perspectives.  
Three perspectives have been considered at the current research stage.  Figure 5 
graphically identifies the three agent divisions considered for application to the TET-
walker system.  The first approach (a) is to assign Agents to the nodes.  This is the 
approach that will be studied by Walt Truszkowski and his student team at the God-
dard Space Flight Center.  This approach would only require four Agents and appears 
to be an optimal approach.  A second approach (b) is to assign Agents to the struts of 
the system.  This approach may be addressed latter but would need six Agents to 
implement.  Another approach is to assign the Agents to represent a facet of the tetra-
hedrons as seen in figure 5 (c).  This will be the approach pursued in this investiga-
tion.  The facets represent a good component of the complex system.  The facet is 
composed of smaller components and a communication framework can be shared 
naturally between the facets because each facet shares components with neighboring 
facets.  Another benefit will be the representation of a facet in future multiple tetrahe-
dron structures as either external shell members (similar to the exterior skeleton of  
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Fig. 5. Three perspectives for Agent representation for TETwalker component membership 
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an ant) or internal muscles and tendons required for supportive functions of morphing 
shape architectures.  It is felt that this approach keeps more in line with the concepts 
of CAS and would allow a higher order of component representation and future  
expandability. 

Collaborative autonomy would then depend on the sharing of data, information, 
knowledge, and goals.  Each facet would still include a degree of membership allo-
cated at the nodes.  The Agents represented as facets should only require placement of 
the facet to a specified location.  This would also allow each Agent facet to contain 
numerical attributes such as strut length, angle measurements, relative positions based 
on strut lengths and vector angles, and identity in relation to at least the system and 
possibly the environment through reference to the “spot” or reference point in the 3D 
virtual space that is simulated.  This relationship among the facets and its members 
will be important as the TETwalker system is expanded to multiple systems.    

It is proposed that the autonomous actions of the collective individual agents can 
then obtain the higher order of autonomy required by the complex system.  The col-
laboration required to control the TETwalker and walk the system similar to a robotic 
vehicle may then be accomplished using known reflex actions or autonomic actions.  
These reflex actions would be moves or maneuvers that have already been accom-
plished or learned in the system. 

4   Conclusion 

CAS provides a unique non-reductionism approach to the advancement of research on 
complex systems like the NASA TETwalker represented in Dr. Steven Curtis’s team 
research efforts [1].  Approaching this unique problem from a different approach as 
presented in this research effort can provide insight into the benefits of CAS tech-
niques applied to complex systems.  Another approach, as discussed with the project 
team, would be to provide simulated intelligence using a complex array of multiple 
parallel processors.  This approach is logical but difficult to accomplish given the 
current state of processing horsepower and AI techniques.  CAS provides a small 
window for scientific viewing and studying of the natural systems represented in 
nature today.  Study in this area can bring understanding to imitating the autonomy, 
adaptation, collaboration, and emersion properties observed in natural systems [27], 
[28], [29]. The Agent approach and framework may even add to grouping future con-
trol schemes into manageable simpler processes that can cover distributed autonomy 
in complex systems. 

It is hoped that the autonomous actions of the collective individual agents can ob-
tain a higher order of autonomy and uncover actions that can be simplified as reflex 
actions or autonomic actions similar to biological organisms.  A goal of this research 
dissertation is to contribute to autonomy through a small step in understanding com-
plex systems such as the TETwalker.  This research is striving to make a small contri-
bution to autonomy and autonomic processes.   The consultation of Goddard’s agent 
expertise, through Walt Truszkowski, will bring beneficial contributions and direction 
to this research effort.   
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Abstract. A classic autonomous robot is an autonomous agent for open, 
unpredictable environments. Such an agent is inherently autonomous but not 
independent. Independence implies unpredictability, which is incompatible with 
agency. The current robot models – behavior based and artificial intelligence – 
have not been effective at implementing the classic autonomous robot model 
due to limitations in their definitions. The artificial intelligence model cannot 
deal with unpredictable environments, and neither model directly includes the 
concept of agency. Animal training as a model for robotics has the potential to 
avoid these problems. Animal training has several advantages. It has an inherent 
model of agency. Goals and behavior are formally separated into human goals 
and animal behavior. The animal is autonomous, requiring conversation 
between human and animal, but it is not an independent entity. A robot 
designed using this model is an articulate machine, programmed as an agent for 
the user.  

1   Introduction 

Animals can be trained to do amazing things. Examples abound in the form of the 
sheep dog, the cutting horse, the rescue dog, the working elephant and the seeing-eye 
dog, to say nothing of circus animals. Animals have been trained for various complex 
human support tasks for millennia.  

The purpose of animal training, such as dog training, is to cause the animal to 
exhibit behaviors on command that will achieve the goals of the trainer. The trainer 
does this by enabling and modifying existing behaviors to create new ones.  

When properly trained, a sheep dog will reliably do the sheep herding tasks given 
by its master, the shepherd. While working, the sheep dog acts as an agent for the 
shepherd, not as an independent animal. If a rabbit runs across the sheep dog’s path, 
the dog continues herding instead of chasing the rabbit. This model of interaction 
between human and animal has some interesting characteristics.  

1. The dog is trained as an agent for the human. The human has the goals in the 
relationship; the dog does not.  

2. The human does the task design, selecting and modifying behaviors to achieve the 
desired goals. 
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3. The dog is not required to be intelligent nor conscious to be useful to us.  
4. Tasks and their goals are formally separated from behavior.  
5. The dog works in an open environment. 
6. The behavior of the dog is probabilistic. It may not achieve a task on first try, and 

it will achieve it to a degree that can vary from one time to the next. 

Let us consider this as a model for a robot, where the robot takes the place of the 
dog As in the above examples, the human is the trainer. We will assume a Behavior 
Based (BB) robot with the added ability to select and modify the behavior in real time 
by communication with the robot. If we implement the model correctly, it will have 
the following characteristics: 

1. The robot is designed as an agent for the human. The human has the goals; the 
robot does not.  

2. The human does the task design, selecting and modifying behaviors to achieve the 
desired goals. 

3. The robot is not required to be intelligent nor conscious.  
4. Tasks and their goals are formally separated from behavior. 
5. Because it is behavior based, the robot works in an open environment. 
6. The behavior of the robot is probabilistic. Because it works in an open, 

unpredictable environment, it may not achieve a task on first try, and it will 
achieve it to a degree that can vary from one time to the next.  

The Animal Training (AT) model provides autonomy without independence. The 
robot acts autonomously in open, unpredictable environments, but its actions are 
completely dependent upon human design and direction. Rather than having an 
independent intelligence, we have a perfect dependent agent, one with no drives other 
than those we define and enable. This paper compares the AT model for robot design 
against previous design models in terms of their usefulness for designing a classic 
autonomous robot.  

1.1   The Robot as an Agent for Open Environments 

We can define an autonomous mobile robot as an agent for open environments, as 
discussed by Wyland in [1]. The robot as an agent for humans is inherent in our 
concept of the robot. We want it to do work for us. An open environment is 
unpredictable but familiar, and knowledge of the environment is inherently and 
chronically incomplete. It is unpredictable because events can happen spontaneously, 
such as a human or moving object interacting with the robot. The robot must operate 
on the basis of familiarity because it is never in exactly the same place twice and it 
never perceives its environment in exactly the same way twice. A robot working in an 
unpredictable environment implies autonomy. It must deal with its environment as it 
perceives it. 

1.2   Agency Versus Independence 

To an observer, an autonomous robot appears to “think for itself” as an independent 
entity as it reacts to its unpredictable environment. However, if we know its internal 
programming well enough to accurately predict how it will react to its environment, 
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we no longer consider the robot as thinking for itself, but consider it as a predictable 
automatic machine. Therefore, a robot or other entity (animal, human, etc.) is 
independent to the degree that we cannot accurately predict how it will react to its 
environment.  

We want the robot to be predictable in all environments. Unpredictable behavior in 
any environment could be dangerous. Properly designed, the robot will act in a 
predictable manner for a given task in a familiar environment. We also want it to act 
in a predictable manner in an unfamiliar environment. If the robot is in an unfamiliar 
environment, we want it to have a well-defined, default behavior, such as stopping 
and asking for help.  

Robots can be unpredictable in unfamiliar environments if not designed for them. 
To be predictable in an unfamiliar environment, the robot must detect when the 
current environment is sufficiently different from the environments it knows and 
respond with a default behavior. Many machine-learning mechanisms, such as neural 
networks and genetic algorithms, do not inherently have such a novelty detection 
mechanism and are vulnerable to unpredictable behavior. Even simple task and 
behavior designs need to verify that the current environment is suitable for current 
task to remain predictable.  

The concepts of agency and independence are incompatible. Agency means that 
the agent works for the user, and the device makes predictable decisions defined by 
the user. Independence means that the independent device makes unpredictable 
decisions on its own. An entity can be an agent to the degree that it is predictable; it is 
independent to the degree that it is unpredictable. We can make an independent entity 
an agent only to the degree that we make it predictable, i.e. to the degree that we 
eliminate its independence.  

An agent needs to be autonomous but not independent. Autonomy and 
independence are different concepts. Independence implies autonomy, but autonomy 
does not imply independence. To be independent, you must be autonomous, or the 
concept has little meaning. However, you can have autonomy without independence. 
A thermostat is an example of autonomy without independence. It autonomously 
decides when to turn the heater on and off, but its user sets its temperature goal. It 
serves as an agent for the user. A sheep dog has autonomy but not independence. It 
does the tasks the shepherd assigns.  

We want our robots to be autonomous but dependent machines because we want 
them to be safe and reliable. This means that for a given environment and task, the 
robot’s actions are completely predictable.  

2   Robot Design Models 

A design model captures the problem to be solved by the design and the approach to 
solving it. To select a model, we need to identify the requirements of the design. In 
our discussion of robots, we defined them as agents for open environments.  

The first requirement is to be able to work in an open environment. An open 
environment is unpredictable but familiar. Homes, offices and the outdoors are 
examples of open environments. These are open because people and animals come 
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and go, and furniture is rearranged. They are also open because the robot will never 
be in exactly the same place twice and will never see its environment from exactly the 
same pose twice.  

The second requirement is agency. Agency is the ability to carry out useful tasks 
for others, e.g. humans. As we require this ability in a robot, we need to be specific 
about the qualities of agency we require. We want to be able to give the robot a task at 
any time and have it respond in a timely manner, where timely is measured against 
human performance. If adding a new task requires days or weeks of design and 
implementation time, the robot does not meet our requirement of timely response.  

2.1   Current Design Models 

There have been two major models in robot design: the artificial intelligence (AI) 
model and the Behavior-Based (BB) model. The AI model is concerned with 
modeling human intelligence, as its name implies. The image of the completed AI 
model is an android, a synthetic human. The BB model is derived from the cybernetic 
tradition as defined by Weiner in [2], which is concerned with communication and 
control in human and animal behavior. Its image is a synthetic animal or insect.  

2.2   Artificial Intelligence (AI) Model 

Artificial Intelligence (AI) as a formal discipline developed a particular model for 
robot design called the Sense-Model-Plan-Act, or SMPA model, as discussed by 
Brooks in [3]. You sense (i.e., measure) the environment, incorporate the 
measurements into a model of your world, create a plan to execute a given task by 
analyzing that model, and carry out the actions defined by the plan. If nothing in the 
environment changes, you go through this sequence once to execute a task. If 
anything changes during plan execution, you repeat the SMPA cycle as required.  

A key concept in AI is the planner as an automatic task designer. The planner 
designs the target task by using mathematical logic to select the best task from a suite 
of reasonable or possible task designs. Some of the first AI planners such as the 
General Problem Solver described by Newell, Shaw and Simon in [5] were based in 
part on theorem proving programs, such as the Logic Theorist also by Newell, Shaw 
and Simon in [6]. In this view, designing a plan is reduced to an algorithmic process, 
like solving an equation. For a discussion of AI planning and its problems, see Brooks 
[7] and Pollock [8] 

In practice, AI planners are less automatic than intended. As Pollock [8] points out 
in reference to the STRIPS planner developed by Fikes and Nilsson in [9], “… What 
is important here is that the planning is interleaved with epistemic reasoning aimed at 
finding appropriate information for use in the planning, and the course of the 
epistemic reasoning is directed by where the agent is in its planning. In effect, 
requiring the human operator of an AI planner to perform this epistemic reasoning in 
advance requires him or her to already know how the planning problem will be 
solved, but this makes the planner superfluous.” In this view, AI planners look more 
like pre-designed plan repositories than independent plan designers.  

The AI model depends on a model of the world and the robot within it. Given 
complete knowledge of the world the robot inhabits, such a model can be manipulated 
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to generate plans for tasks. Industrial robots in factories occupy this kind of closed, 
known world, and their performance has been good as a result. This model also works 
well in spacecraft robots. All reasonable failures and failure combinations can be 
programmed into the internal model of the craft, and an action is defined for each 
failure combination. All spacecraft states are therefore known, and the appropriate 
action is defined for each state.  

However, the AI model does not work well in open environments, where 
knowledge of the world is inherently incomplete. AI uses logical models of the world 
to predict the future from the state of the current model and use these predictions to 
form a plan. In an unpredictable world, this is either logically impossible or 
computationally intractable. A variant of this problem is the famous frame problem, 
discussed by Ford and Pylyshyn in [4] which is the problem of predicting what does 
not change in the world when the robot changes some thing. For a discussion of other 
problems with the AI approach, see Pollock [8], Ford and Pylyshyn [4] and Brooks 
[3]. The AI approach does not work in open environments, so it fails our first 
requirement.  

The AI approach also does not have an inherent concept of agency. AI implies 
independence. As a synthetic human, an artificially intelligent machine should 
independently think for itself. There is no direct path to the inclusion of agency. The 
tacit assumption seems to be that once we learn how intelligence works, we will be 
able to design a robot that will naturally act as an agent for us. Incidentally, the 
concept of planning and using planners supplies an indirect tradition of agency. 
Planners require goals as inputs to the planning. We do not understand AI well 
enough to model it as a useful generator of these goals, so human users typically 
supply them. The robot is acting as an agent, but only temporarily to support 
development.  

2.3   Behavior-Based (BB) Model 

The Behavior-Based (BB) model focuses on creating desired behavior in a robot. 
Arkin in [10] defines behavior as: “A behavior is (…) a response to a stimulus.” 
Robot behavior in an environment is a response to stimulus from the environment as 
perceived by the robot. This can be an outside stimulus such as a light or sound, or it 
can be a stimulus caused by the robot sensing an obstacle as the robot approaches it. 
The BB model is a mapping of stimuli to responses. It has evolved along with the AI 
model, with both having origins at around 1950. The BB model is associated with 
cybernetics, the study of communication and control in man and machine, as 
originally defined by Weiner in [2].  

BB robots can be divided into two categories. The first category is reactive systems 
and contains pure stimulus-response BB robots that have neither state nor planning. 
The second category is hybrid systems and adds state and planning elements to the 
reactive systems model.  

Perhaps the first example of a BB robot was the W. Grey Walter’s mechanical 
tortoise described by Walter in [11]. It looked a little like a tortoise and moved around 
the floor on three wheels, a single wheel for driving and steering, and two idling 
wheels. It had two sensors (a photocell and a bump sensor) and two actuators in the 
form of motors, one for the drive wheel and one for steering. It was a simple robot 



 Autonomy Without Independence: Animal Training as a Model for Robot Design 165 

with three behaviors, but it demonstrated what appeared to be sophisticated, even goal 
oriented activity. Simple behaviors and a complex environment produced complex 
activity.  

In reactive systems BB robots, behaviors are designed in and selected at run time 
to produce the desired robot activity. Artificial neural networks have been used to 
allow BB robot behaviors to be trained-in rather than designed-in, but the intent is the 
same. Such robots resemble mechanical animals or insects, particularly those with 
multiple legs. Indeed, animals and insects are studied for ideas in behavior that can be 
applied to BB robots. This is called ethologically guided or constrained design. See 
Brooks [7] and Pollock [8] for a more thorough discussion of BB robotics.  

However, the reactive systems BB design model does not have the problem with 
open environments that the AI model has. It reacts directly to the environment as it 
experiences it, whether open or closed. It has no model of the environment to be 
incomplete or in error. It is not bothered by unpredictability because it makes no 
predictions. This meets our first requirement of being able to operate in an open 
environment.  

The reactive systems BB model does not include agency, as we have defined it. As 
a synthetic animal or insect, it is expected to think for itself. It maps stimuli to 
responses with no memory other than the mapping itself. Since it has no state 
memory, there is no way to give it a task to remember or ask it about tasks completed. 
Current floor-cleaning and lawn-mowing robots are of this type. However as Brooks 
in [3] points out, the BB model can certainly have state and is not constrained to be 
purely reactive. For example, the Allen robot described by Brooks in [12] had a 
higher layer that would select a goal for the lower, reactive layer to achieve.  

If the reactive systems BB model has no state memory, it cannot include our 
concept of agency, where agency is considered to be a real-time request for task 
performance.  

2.4   Hybrid Model 

Hybrid models are combinations of the deliberative elements of AI and the reactive 
elements of BB in an attempt to use the advantages of one model to compensate for 
the deficiencies of the other. Many combinations are possible, from primarily AI to 
primarily BB. Arkin in [10] provides a review of many of these hybrids.  

Combining the AI and BB models is problematic. The AI model relies on 
knowledge contained in a model in order to plan and generate actions, while the BB 
model does not have such a model. The AI model retains all the problems of rational 
planning, and there is no obvious way for the BB model to help this. A major problem 
of hybrid models is how to combine deliberative and reactive elements in a working 
design. As Arkin in [10] notes, “The nature and the boundary between deliberative 
and reactive execution is not well understood at this time, leading to somewhat 
arbitrary architectural decisions.” Also, planning that uses behaviors will be much 
different than conventional AI planning, as pointed out by Brooks in [7] and by Agre 
and Chapman in [13].  

The intent of the hybrid model is to add planning to the reactive BB model. The 
goal is to provide task planning capable of operating in an open environment. 
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Assuming that the hybrid model is based on reactive behavior, it should be able to 
operate in open environments, meeting our first requirement.  

Like the AI and the reactive systems BB models, the hybrid robots have no direct 
concept of agency. Both assume that the robot is an independent, synthetic animal or 
insect that thinks for itself, violating our requirement for agency.  

3   The Animal Training (AT) Model 

The Animal Training (AT) model provides us with an image and a design 
methodology for a robot that can potentially meet our design requirements. 1) 
Because it is behavior based, it will work in open environments. 2) The human 
designer/user does the task design, providing a direct model of agency.   

3.1   Robot Design Using the Animal Training Model 

In the AT model, the robot designer is in the position of the dog trainer, and the robot 
user is in the position of the shepherd. Both are involved in the robot design, but at 
different points. The robot designer creates a robot with the physical characteristics 
and behavior capabilities useful for its range of tasks in its set of environments. The 
robot user then designs task programs that use these primitive behaviors.  

User programming of the robot is significant because a robot is an agent designed 
to do tasks for humans in open environments. All open environments are unique but 
with discoverable similarities. For example, even though two apartments may be 
identical in layout, the owners will furnish them uniquely. However, both apartments 
are similar because they will have sofas, chairs and tables, although different in type 
and style. As a result, each robot task design is unique to its intended open 
environment. Each user must design the tasks for the robot's unique environment.  

Human task design for robots is finite in scope in the same sense that dog training 
is finite in scope. The robot is not expected to deal with all possible situations, just the 
typical ones. If it encounters a situation that it cannot deal with, it calls for help. An 
independent entity does not have this option; in principle, there is no one to call. As a 
result, human task design starts with a few practical tasks and the ability to deal with a 
few typical situations, such as avoiding an obstacle in the path to a goal. Assuming 
tasks can be added and extended incrementally, the robot can become subtle and 
sophisticated simply by accretion.  

Robots in the AT model are not independent entities. They have no beliefs, desires or 
intentions of their own. Since robots in the AT model are not modeling independently 
acting humans or animals, there is no requirement for their design to be biologically 
plausible. However, animals and humans can be useful sources of design ideas.  

3.2   Robots as Pick-and-Place Machines 

Robots are designed to do tasks, and their tasks and environments largely determine 
their design. A house robot, an undersea robot and a planetary explorer robot are 
significantly different in their designs because of their very different tasks. However, 
they are all robots, so it is reasonable to ask what design characteristics they have in 
common.  
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As a broad generalization, robots are pick-and-place machines designed for open 
environments. Pick-and-place is a term used in industrial robotics to indicate that the 
robot picks up something from one location and puts it in another. Picking up includes 
manipulation of the object selected. Exploration robots are pick-and-place robots that 
seldom actually pick up something. Their job is to find interesting things, things that 
would be worthy of picking up. Manufacturing, cleaning and maintenance robots 
extend the definition of the picking-up to include manipulation of the things chosen 
for pick-up. 

The combination of the expected task and its environment determines what is 
picked up and where it is placed. A house robot may get you a soda from the 
refrigerator, then pick up and put away the children’s toys. A construction robot may 
unload wood from a truck and distribute to building sites. A planetary rover robot 
may explore an area looking for candidate objects to pick up, or to simply identify.  

Since this is a broad generalization, there will be robots that do not seem to fit the 
model of pick-and-place. An example would be a social robot, such as a museum 
guide. However even in these cases, their implementation may be a subset of the pick-
and-place model due to the need to work in open environments, for agency and for 
communication.  

3.3   Pick-and Place-Requirements 

Pick-and-place operations require several activities: 1) The robot must move to where 
the object for pick up is to be found, 2) It must search for and identify the object. 3) It 
must move to the object and pick it up, and 4) It must carry the object it to its 
destination and place it there. These operations require movement, navigation, object 
recognition, object grasping, pick-up, place and release. 

A pick-and-place robot can be described as a robot arm with a platform to move it 
around and a vision system to guide it. The first requirement is a platform that can 
move around efficiently in the robot’s intended environments. This is a challenging 
mechanical engineering design problem, one that can be simple in definition but 
complex in execution.  

The robot needs to navigate relative to the objects in its environment because it 
needs to either go to them or avoid them. This kind of navigation is called pilotage, as 
in piloting a ship in a harbor. Pilotage is required for maneuvering in an open 
environment where objects can move around. Docking is precision pilotage, as in 
bringing the boat next to the dock. Docking is required for object manipulation, such 
as picking things up.  

Robot pilotage requires recognizing objects (e.g. landmarks) and determining their 
location. It is also required for finding and picking up objects. Recognition of specific 
objects may not be required for collision avoidance, but is helpful even then. Because 
object recognition and location is central to our pick-and-place robots, their design 
can be called Object Based Design (OBD).  

As an example of a pick-and-place house robot, consider a robot that will get you a 
soda from the refrigerator in the kitchen and bring it to you as you sit on the couch. 
To begin with, the robot must go to the kitchen. By recognizing surrounding 
landmarks, it can determine its location and select a path that will take it to the door 
into the kitchen and into the kitchen itself. Then, it will look for and recognize the 
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refrigerator as another landmark. The robot will proceed to the refrigerator and dock 
in front of it. Then, it will search for and recognize the door handle. The robot opens 
the refrigerator door, searches for a can of soda, recognizes and locates the can, 
guides the arm and gripper to the can and picks it up. The robot then closes the 
refrigerator door, navigates back to you and hands you the soda. As this shows, object 
recognition is essential for pick-and-place operations.  

3.4   Object Recognition 

Object recognition – particularly using vision - has been an area of intense study for 
decades. The results of these efforts have tended to be limited and specific rather than 
general. A recent advance offers to change this situation. The advance is a new vision 
based recognition algorithm, the Scale Invariant Feature Transform (SIFT) developed 
by David Lowe, as described in [14], [15] and [16]. This transform can uniquely 
recognize objects at any distance or pose and with varying lighting and occlusion. 
This capability is what the object recognition community has been seeking.  

The SIFT algorithm can identify an object and measure its location in the image. 
Given knowledge of the camera optics and direction of gaze, the object bearing (angle 
to the robot) can be found. Using stereo vision or other distance measuring 
techniques, the range of the object can be found. The result is an identification of 
objects in the field of view and their location relative to the robot. Given algorithms 
like the SIFT algorithm that can provide rapid and reliable identification and location 
of all objects in view, pilotage, docking and grasping are straightforward engineering 
problems.  

3.5   A Robot Architecture Using the Animal Training (AT) Model 

The AT robot design model consists of a robot with useful behaviors and tasks 
programmed by a human user and that executes those tasks on verbal command. 
Physically, it is a mobile platform carrying a camera for object recognition and an arm 
for grasping and manipulating.  

A robot architecture that can implement this model consists of a 1) a behavior 
manager, 2) a task manager and 3) a dialog manager. The behavior manager processes 
sensor data to drive actuators, such as the motors in the wheels (or legs) and arms of 
the robot. The task manager converts behaviors into tasks that achieve a goal, and it 
selects and executes tasks given to it by the dialog manager. The dialog manager is 
the interface between the human user and the task manager. It communicates with the 
task manager to select tasks and to create new tasks.  

The behavior manager uses the identities and relative locations of objects to control 
the various actuators of the robot, as determined by the active behaviors. It consists of 
sensor processors (e.g. the vision system) to identify and locate objects, an analog 
logic system as described by Wyland in [1] to convert this information into actuator 
control signals, and actuator processors for local control of actuator motors.  

The task manager executes tasks previously supplied by the human user. In this 
paper, we will assume the RAP model described by Firby in [17] for behavior based 
task management. Tasks consist of primitive tasks and composite tasks. A primitive 
task is a behavior that achieves a goal. The behavior is selected and enabled by the 
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task manger. The task manager also determines when the task is done and whether it 
was successful. A composite task is a tree structure of sub-tasks and primitive tasks.  

Because the robot operates in an unpredictable environment, tasks can succeed or 
fail, and they can succeed in more than one way. If a task fails, the task manager must 
know what to do. An optional retry list for each task can serve this function. If a task 
fails, the task manager tries the next task on the retry list. If it reaches the end of the 
list without success, it passes the failure back to the task that called it or notifies the 
human at the appropriate time. This notification is a task of its own. Retry lists are 
often used by humans. For example, you may have a list of things to try if your car 
will not start.  

The dialog manager provides structured natural language communication between 
the task manager and the human user. The robot only contains what we put in it. We 
enter the phrases and sentences we want it to recognize, and we enter the responses to 
those sentences. In concept, this is much like a frequently asked questions (FAQ) list. 
The difference is that the answers will reflect the current state of the robot, such as 
tasks completed. A simple conversation processor such as described by Suerth in [18] 
can be used as the dialog manager. Although the robot may eventually acquire a large 
number of input sentences and their responses, this is not as daunting as it may seem. 
The robot only needs to recognize the sentences that initiate its tasks, including 
replying to status questions. Sentences and their responses are added incrementally as 
needed for new tasks. Initially, only a small number of sentences and tasks may be 
required for the robot to be useful. This number can grow easily and incrementally 
with time. Eventually the robot may be capable of sophisticated tasks and 
conversation by simple accretion. In effect, the robot will contain the complete policy 
manual for a perfect clerk, where every useful, relevant question or request will be 
recorded, along with its appropriate response.  

The initial dialog processor can be purely text based. This simplifies the 
recognition problem. Speech synthesis can be added for a verbal response, and speech 
recognition can be added for verbal input. Speech recognition – typically a difficult 
problem – can be aided by the finite nature of the vocabulary and dialog.  

The dialog manager includes an episodic memory. This memory records task 
information from the task manager, such as tasks completed and objects recognized as 
part of task execution. The episodic memory remembers tasks executed and 
information specific to the task. Note that scanning for objects is a task. This limits 
and defines the scope of the memory. The episodic memory allows status reporting 
and history analysis, which is useful in task design and debug.  

3.6   Task Design by Giving Directions 

Robot design is about task design. In the AI and hybrid models, tasks are supposed to 
be designed automatically. In the BB model, tasks are designed-in as primitive 
behaviors. In the AT model, tasks are designed by the robot users.  

The ordinary activity of giving directions is a form of task design, also known as 
task planning, as pointed out by Agre and Chapman in [13] and by Payton in [19]. 
Directions are commonly given for navigation purposes, as a task plan for going 
somewhere from a known starting point. Consider the task “Get me a soda.” Detailed 
directions for this task might be: 1) Go to the kitchen, 2) Go to the refrigerator,  
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3) Open the refrigerator door, 4) Find a soda, 5) Reach in and grasp the soda, 6) Pull 
the soda out of the refrigerator, 7) Close the refrigerator door, 8) Return to me (the 
requestor), 8) Present the soda to me, and 9) Release the soda can when I (the user) 
grasp it. These directions assume that each step (i.e. subtask) is a task that the human 
(or robot) knows how to do.  

Directions are object based. Each step of these navigation directions refers to an 
object as the focus of the task. Most steps refer to movement from the current location 
toward a named object or a named place defined by objects around that place. Other 
steps involve manipulation of a target object, such as opening the refrigerator door 
and grasping the soda. The implied primitive tasks for these directions could be 
movement from the current position to a position near an object; grasping, opening 
and closing the refrigerator door; and grasping, picking up and releasing the soda can.  

3.7   Task Memory and Task Selection 

In the Animal Training (AT) model, the user selects previously designed tasks. This is 
planning by remembering, as described by Hammond in [20]. Tasks are named, and 
the dialog manager can select tasks to be done by name. Task design by giving 
directions implies each step of the directions is a subtask with a named object-based 
activity as its target. The task manager includes a task memory that holds the task 
designs.  

Planning by remembering in the AT model does not mean the rejection of other 
forms of planning. In the process of creating tasks and using the robot, patterns of use 
and programming will develop. These patterns can be exploited to support portions of 
the design process.  

3.8   Building the Robot – Work in Progress 

We are building a robot based on the Animal Training design model as described in 
this paper. The first prototype is a battery powered, autonomous, indoor robot. It 
consists of a 12” square platform of a conventional design with two driven wheels 
plus a caster. The platform holds a small robot arm, a video camera and an embedded 
PC motherboard running Linux. It will be used to integrate the AT elements in a 
complete working robot.  

4   Summary 

The Animal Training (AT) design model allows us to design robots as articulate 
machines that do tasks as agents for human users in open environments. It provides an 
inherent model of agency, with a formal separation of human provided goals and 
robot behaviors. Neither consciousness nor intelligence is required or even 
meaningful because the robot is programmed as an autonomous machine, not an 
independent entity.  

The AT model is behavior based, allowing the robot to function in an open, 
unpredictable environment. Its behaviors are designed-in, and the human user 
programs all its tasks. The task design problems of AI are avoided by relegating the 
designs to the human users. Object based behavior design and task design by giving 
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directions simplify these designs. Robot task sophistication grows naturally by 
accretion. The result is an an articulate, autonomous agent that performs tasks for 
humans in an open environment.  
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Abstract. As e-Commerce systems evolve, and B2B models flourish, more and 
more complex payment transactions are performed electronically. A consistent 
topic periodically addressed by e-Commerce systems is how to reduce the costs 
associated with these electronic transactions, such that it is of minimal 
detriment to the growth in the volume of transactions that are conducted online. 
This question is of particular interest in the area of micro-payments, where the 
cost of the transaction is a significant percentage of the total cost of the goods 
exchanged between the merchant and the buyer. This paper proposes a novel 
architecture and associated artifacts for online payment processing providers 
and their client applications (online order capture and processing systems, 
payment capture and processing systems, and other online-based merchant 
software). New data structures, message exchange patterns and optimization 
algorithms are developed to support this new paradigm. These artifacts are 
molded following the concepts defined by the Autonomic Computing and 
Intelligent Agents disciplines. 

1   Introduction 

Large customers of payment service providers today do not have an easy way to 
automatically choose how to best process their online payment transactions, because 
payment providers have a static pricing structure and these prices are set as part of the 
service agreement between providers and merchants. Any changes in this pricing 
structure would mean that a new agreement would have to be drafted between the 
parties involved, making this architecture very unfriendly to dynamic cost variations 
inherent to a competitive landscape. This situation, unfortunately, does not benefit the 
end customers that ultimately pay for these costs since they are embedded as a 
percentage of the consumed goods and services. If customers of online payment 
processing systems would follow an autonomic approach based on mediation 
provided by intelligent payment brokers in order to dynamically and continuously 
evaluate how to best process a batch of electronic payment transactions, then 
competitiveness among payment providers would increase, resulting in a reduction in 
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the cost overhead, a corresponding improvement in operating margins, and/or a 
reduction in the selling prices of goods and services offered to end consumers. 

As examples of real world payment service providers and their respective payment 
protocols, please refer to [MC], [VISA], [SET], [ACH], [PAYPAL], [CYBER], 
[PARA], [VS], [FIRST] and [CITI]. There are many more, but this is a representative 
list of the institutions commonly available for online merchants. Additionally, a good 
reference for information on micro-payments is [MICRO]. 

Our proposed architecture consists of the following elements: 

• An intelligent and autonomous payment processing broker 
• A common interface between broker and merchants 
• A common interface between broker and payment processors 

The UML component diagram shown in Figure 1 depicts these elements and their 
relationships with other software elements in the merchant and provider side. For a 
reference on UML collaboration and other diagrams, please refer to [UML]. 

 

Fig. 1. Payment Broker and associated elements 

As we can see from the diagram, the payment broker is a component that will 
mediate service requests between clients who need payment processing and payment 
processing service providers. This enables the mediator to provide real-time analysis 
of how to better process a given request for a batch of payment transactions. This 
mediator (the broker) has autonomic, adaptive and intelligent characteristics because 
it is constantly performing cost-benefit analysis based on previous history and current 
cost structures in order to determine how a request should be honored. 
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2   The Payment Broker Architecture 

As we put together the architecture capable of supporting the concept of an 
intermediate payment broker, we must define what are the data structures and 
interfaces supported in the architecture. The following UML collaboration diagram 
further depicts how the components of this architecture communicate with each other 
in order to provide the mediation for payment request processing. The payment 
broker's role is to determine the best way to process a certain payment batch request 
using the captured payment data and the payment policies advertised by each payment 
processor. This information is then transmitted back to the merchant so it can select 
the best option, and it also augments the local knowledge base used to help in the 
analysis of future payment requests. 

 

Fig. 2. 3-phase interaction model for payment brokerage 

The previous figure shows a 3-phase interaction model that depicts the 
communication between the payment processor and the payment broker as well as the 
communication between the merchant application and the payment broker. 
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The processor-broker interface enables policies associated to each payment 
processor to be published and made available as parameters for the cost analysis 
algorithm present in the payment broker. This interaction is not frequent; it only needs 
to happen at setup time or when there are changes in the set of policies a certain 
payment provider supports (in which case, these changes must be communicated back 
to the payment broker). 

Likewise, the merchant-broker interface enables payment instruction data and 
requests for cost analysis to flow between the merchant application and the payment 
broker. It also enables the results of the cost analysis to get back to the merchant 
application that can then effectively execute the requests. Alternatively, the analysis 
results of the payment requests and selection of the payment provider could be 
performed directly by the payment broker in behalf of the merchant application. 

The cost analysis performed by the broker is said to be adaptive and intelligent 
because complex factors are often involved in the structure of payment transaction 
costs, like which are the products being purchased, what is the requested payment 
vehicle (payment method), time of request, contract restrictions, total number of 
transactions required by the merchant, total amount associated with each transaction, 
etc. All these variables are part of the information governed by the payment policies 
associated to each payment processor. Additionally, by adding a mediation layer 
between merchants and providers, other complex factors can be taken into account as 
well, so pricing structures can be better modeled and a higher degree of accuracy 
achieved. 

In this paper we show typical factors and policies adopted by payment providers 
and how they can be factored in common metrics that are used as input for a dynamic 
and autonomous analysis of the minimum cost associated with any given payment 
processing request. 

2.1   Payment Processor Policies 

Several variables are typically accounted when a payment processor determines its 
pricing and operation model. Most of these variables can be translated into payment 
policies and are frequently disclosed as part of the agreement established between the 
payment processor and the merchant. Common policies frequently used in the 
payment processing industry are now presented: 

Response Time: This policy determines the quality of service offered with each 
payment operation. Normally merchants submit thousands of different payment 
transactions to a provider. The contracted terms between the merchant and the 
payment processor must guarantee that this many transactions will be processed in a 
timely basis, otherwise merchants may experience higher and higher response times 
from payment processors and be limited in the number of transactions they can 
support in real time in their front end business. Typically large merchants contract 
higher response time, depending on the number of servers and transactions they 
support in their online store fronts. 
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Transaction Volume: This policy measures how much business will be consumed by 
a certain customer of a payment processor. The greater the transaction volume the 
more processing resources will be consumed, but at the same time the more profit it 
will bring to the payment processor. Payment processors can differentiate their level 
of service based on transaction volume expected by a certain merchant. Usually 
merchants with enough transaction volume justify higher quality of service and 
cheaper per-transaction rates. In addition, penalties could be established when a 
certain volume of transaction is not achieved during a certain subscription period. 

Risk Factor: This policy tries to establish a measurable factor in the risk incurred by 
payment processor when it accepts a request for payment originated by a given 
merchant. At this point funds must be transferred between two different parties and 
the payment processor must be able to guarantee that transaction, accepting the 
business risk of payment default. Risk factor policies try to quantify the likelihood 
that merchants will be able to honor their debts with the payment processor at a later 
time. Usual aspects considered are: if the merchant has established credit in the 
market, if the merchant if an established business as opposed to a startup venture, and 
also the aspects of the merchant business itself - high risk businesses, like gambling, 
online adult services and non established newsletter services are usually rated poorly 
and have a higher associated risk. 

Expiration: This policy determines if a payment transaction has an associated 
expiration time or not, and how long it takes for each payment transaction to expire. 
Usually this is used in conjunction with authorize operations, where the payment 
processor only reserves a certain amount in the account of the payer instead of 
actually committing it immediately. It is advantageous to have an expiration time 
associated to these reservations, because sometimes the merchant interaction (order, 
service, etc) doesn't go through all the way, and instead of issuing a new operation to 
cancel the previous authorization, a merchant could choose to just let it expire instead. 

Batching Support: This policy determines if a payment provider supports batch 
processing of transactions in addition to real time processing. Sometimes it is more 
advantageous to a merchant to batch transactions and submit them all at once in 
periodic intervals or off peak hours rather than having to contract a very high 
response time with a payment processor. There are also limits to the real time 
processing capability of payment systems. When these limits are surpassed, it 
generally means that a batching capability is required to support the business model of 
a certain merchant. 

Supported Validations: This policy determines if a validation mechanism is offered 
or not by the payment processor. It can also determine different levels of validation 
offered to merchants at different service levels. Depending on local laws in the 
payment processor geography a certain level of validation is required. As an example 
we mention the AVS (Address Verification System) required to payment providers 
offering credit card services in the United States. 
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Supported Operations: This policy determines the types of operations that must be 
supported by the payment processor when processing payment requests sent by the 
merchant. Payment operations depend, most of the times, in the nature of the payment 
method utilized. For example, for credit-oriented payment methods, like credit cards 
or letters of credit, there are three possible payment operations: authorize, deposit and 
credit. For other methods of payment, like electronic checks, follow a fire-and-forget 
philosophy where authorize and deposits are performed in the same step, in a single 
operation, and credit operations do not exist. Moreover, other forms of electronic 
operations like reversals (authorize reversal, deposit reversal and credit reversal) can 
also be supported, depending on the flexibility offered by issuing banks and payment 
providers. 

Subscription: This policy determines how long a merchant has contracted the 
services of a payment provider. Typically the longer the contracted period the more 
advantageous it will be for the merchant - greater service levels and cheaper fees. 
Some examples of subscription policies are: Monthly, Quarterly, Yearly. 

Associated Fees: This policy establishes the fee matrix contracted between the 
payment processor and the merchant. This policy can actually depend on other 
policies and negotiation between merchant and payment provider. The fee matrix may 
also be variable, for example, a higher fee for the first thousands of transactions in the 
subscription period, and a gradual decrease of fees as the number of transactions 
grow. Also not only per transaction fees exist. Other fees, like subscription fees, 
service fees, customer support fees, may exist and be adjusted according to the 
policies associated to the fee matrix. 

Geography: The geography of the merchant may influence the terms of the contract 
between merchant and payment provider. Factors like local laws and risky 
geographies (for example, support for international transactions) are some of the 
factors that may influence this policy. Another factor often considered is round-the-
clock processing support - for example, some geography can provide processing and 
customer support in off-peak times, while mainstream operations are not supported in 
the local geography. Also, sometimes payment providers have no support for payment 
processing originated from certain geographies. 

Other QoS-related Policies: Several other policies can also contribute with 
considerable influence over the decision to use or not a certain payment service 
provider. Some of these policies are mentioned here as an example: contracted 
maximum amount of down-time, support for alternate and/or dedicated servers, daily 
versus seasonal off-peak support, etc. 

As we can see, there are several different variables involved in the terms of service 
between merchants and payment providers. This list above is not exhaustive. 
Certainly other policies and variants will exist and they all can influence both the 
level of service and the costs associated with payment requests that must be 
processed. 
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2.2   An Autonomic Approach 

The autonomic computing approach provides well established architectural concepts 
that can be used to model payment brokers as intelligent agents utilized as mediators 
between client software (the merchant applications) and server software (the payment 
processor system). In this approach we reference [IBMAC] and assume the following 
model mappings: 

Merchant Application: The merchant application implements the interface with the 
end user in behalf of the merchant. In an online ordering system, for example, the 
merchant application will capture order and payment information using a graphical 
user interface available to the end consumers, or buyers, or an operator in the 
merchant’s customer service desk. We equate this behavior with that associated with a 
Manual Manager in the Autonomic Computing architecture. The role performed in 
this application corresponds to the Monitoring layer of the autonomic computing 
control loop. 

Payment Provider: The payment provider system implements the access to the 
resources, or the institutions and accounts holding the actual resources being 
managed, i.e. the accounts and funds in these accounts held at banks and other 
financial institutions. We equate this behavior with a Touchpoint in the Autonomic 
Computing architecture. The manageable resources are the accounts and funds being 
transferred between accounts. The manageable resource capabilities are the payment 
operations supported by the financial institutions. 

Payment Broker: The payment broker agent implements intelligent behavior that 
otherwise would not exist in the interaction between merchant and payment provider. 
In this role, the payment broker performs optimization analysis and planning and tries 
to offer the best cost-benefit relationship between merchants and supported policies 
by payment providers. In addition, a payment broker can also establish the direct 
relationship with payment providers necessary to execute payment operations. We 
equate this behavior with that of an autonomic manager in the Autonomic Computing 
architecture. It implements the Analysis, Planning and Execution layers of the 
Autonomic Computing control loop. 

Policy Repository: In this architecture, the payment providers must publish their 
business policies to common repositories that can be read by the payment broker. This 
collection of policies consists of knowledge that is transferred from the payment 
providers and can be utilized by the payment broker in the analysis and planning 
phases. We equate this policy repository with a Knowledge Source in the Autonomic 
Computing architecture. Different forms of knowledge may be stored in knowledge 
sources and transferred to autonomic managers to influence their behavior. 

Several interactions are defined between these components. In order to be truly 
autonomic, the payment broker must capture payment provider policies from existing 
policy repositories. Payment providers first advertise their policies through a common 
mechanism, like a web service, and once this information is retrieved, it is published 
in these distributed policy repositories. Then, every time a payment broker wants to 
establish a relationship with a given payment provider, it looks up for the 
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correspondent policy repository that carries information about that particular payment 
provider and loads its policies into memory for analysis purposes. 

Payment providers act as touchpoints and publish their capabilities along with their 
policies, but this information is not always stored in the policy repository. A 
capability query can be issued between payment brokers and payment providers. This 
can be implemented as part of the manageability interface of touchpoints, that follows 
the WS-DM MUWS standard – please refer to [MUWS] for more information. 

Once payment brokers and payment providers are up and running and have 
established relationships (i.e. the payment processor policies are loaded into the 
payment brokers), the merchant applications can start using the analysis benefits 
provided by the payment broker architecture. Merchant applications perform the 
Monitoring layer of an autonomic manager, by capturing orders and payment 
information associated to these orders. Then, instead of sending payment requests 
directly to payment providers, these applications package their requests with merchant 
and order profile information and send them to payment brokers that will then be 
responsible by performing Analysis, Planning and sometimes also Execution of 
consolidated payment requests that now go to their end target, the payment provider. 
Upon successful completion, the payment provider sends payment results to their 
original merchant applications. 

Analysis and Planning are two important steps performed by the payment broker 
that would otherwise not be performed in the traditional payment architecture. The 
following figure shows the elements of the architecture, their mapping into 
Autonomic Computing concepts, and the interactions between them. 

 

Fig. 3. Autonomic Computing concepts for the Payment Broker architecture 
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2.3   Payment Broker Internals 

The payment broker performs three important tasks: Analysis, Planning and 
Execution, each with different goals. The combined goal is to provide the best cost-
benefit ratio to payment provider customers, i.e. the merchant applications. With that 
goal in mind, savings in costs and quality can be passed onto the market. We now 
explain in more detail what activities are accomplished in each of these tasks. 

Analysis: The analysis layer of an autonomic manager is where external stimuli 
captured in the Monitoring layer is drilled down and compared to internal knowledge 
in order to determine if a specific reaction is necessary or not. Most of the times, this 
reaction is the embodiment of aspects of the autonomic computing vision: self-
healing, self-protecting, self-optimizing or self-configuring. In the payment broker the 
external stimuli corresponds to the payment requests sent by merchant applications 
along with merchant and order profiles. This information, along with specific 
knowledge (the payment policies published by payment providers) is utilized in 
heuristic analysis so the best ways to perform the requested payments are calculated. 
The merchant profile also contains merchant specific policies that contribute to the 
analysis, since it provides specific requirements on quality of service and associated 
costs that must be met. Moreover, multiple payment requests coming from the same 
merchant can be consolidated at this layer. Often, analysis performed in a large data 
space is more effective than if payment requests were analyzed one by one. 

Planning: The planning layer of an autonomic manager is responsible by a broader 
scope analysis than that performed in the Analysis layer. Often a specific reaction is 
determined in the Analysis layer and carried over for validation and cause-effect 
analysis in the Planning layer. In this layer, the relationship among various 
manageable resources is taken in consideration, and a plan of execution is 
constructed. In the payment broker architecture, we do consolidation of payment 
requests originated from multiple merchants into bulks of requests that are then sent 
in batches to payment providers. This provides extra optimization and savings, since 
large amounts of payment requests often are advantageous to the customer - as 
previously mentioned payment providers often provide cost and quality incentives for 
customers with large transaction volume. 

Execution: The execution layer of an autonomic manager is responsible by 
coordination of change plans created in the Planning layer and translating them into 
operations that are associated to touchpoints and managed resources. Alternatively, a 
standard payment interface could be developed and the translation to specific payment 
provider interfaces could be handled by touchpoints. It is our understanding that such 
standardization has been tried before and was not successful, due to the vast number 
of payment providers from different geographies and managing different types of 
payment. A more feasible alternative is to provide translation logic in the execution 
layer of payment brokers by supporting a plug-in architecture. 
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The following figure shows the layers and internal operation of payment brokers. 

 

Fig. 4. Payment Broker Internals 

As we can see in the picture the information that flows through each of these layers 
is based on standard knowledge formats, so different payment brokers could exchange 
this information between themselves in a standard way. 

3   Case Study 

In this case study we will show a very simple scenario where a payment broker could 
benefit merchants and help them achieve better costs and quality of service. Let’s 
consider the following situation: 

• Merchant M1 contracts Provider P1 to process its payment requests 
• Payment Provider PP1 processes credit cards CC1, CC2 and CC3, and each 

payment transaction (for simplicity) costs 10 cents. Subscription costs $5K per 
quarter. 

• Merchant M1 has an average volume of 300,000 transactions per quarter for each 
of CC1, CC2 and CC3. 

• The associated cost will be $5K + $30K + $30K + $30K = $95K. 
 
Suppose now that instead of having a direct contract with PP1 merchant M1 

utilizes the services of Payment Broker PB1. A typical payment broker would 
consolidate several different merchants and payment providers together. For 
illustration purposes let’s consider the following situation: 

• Payment Broker PB1 contracts with 5 different Payment Providers: PP1 to PP5. 
• Each Payment Provider charges $4K of subscription fees per quarter (a smaller 

subscription fee because of the higher transaction volume executed by PB1). 
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• Payment Provider PP1 charges 8 cents per transaction (again due to higher 
volume). Also, PP2 is a discount provider for CC1 and charges only 5 cents per 
transaction for that particular credit card (but charges higher amounts for CC2 and 
CC3). 

• Payment Broker PB1 provides brokerage for 10 different merchants, each with the 
same average levels of M1. 

• With some calculation we can see that in an optimal situation, Payment Broker 
could provide the same service to merchant M1 for a lesser subscription fee of only 
$2K ($4K times 5 providers divided by 10 merchants). In addition, the same level 
of service per transaction would cost only 5 cents for CC1 and 8 cents for each of 
CC2 and CC3. Processing 300,000 transactions for each of CC1, CC2 and CC3 
would cost PB1 $15K + $24K + 24K. 

• The total costs of the services of PB1 to M1 would then be $2K + $15K + $24K + 
$24K = $65K. Total savings of $30K would benefit M1 and allow it to lower its 
costs and prices. 

In the real world payment transaction costs and associated quality of service levels 
may be much more complex than our sample scenario. As such, we are confident that 
significant savings in costs and quality of service can be achieved when payment 
brokers are fully implemented and provide a common access point to the millions of 
existing merchants that depend on complex payment provider services. 

4   Conclusion and Future Directions 

In this paper we presented a novel architecture that promotes intelligent analysis and 
consolidation of payment transactions. This allows for better cost-benefit ratios, lower 
fees and higher quality of service, to be offered to merchants. 

We also proposed that with very simple heuristic analysis and planning, great 
savings and benefits on quality of service can be achieved. 

Future directions of this work will now concentrate in the description and 
optimization of the analysis steps, so higher levels of benefit can be achieved. Given 
the complexity of payment provider policies and merchant requirements in the real 
world, heuristic analysis is not always sufficient for achieving optimal savings. 
Sometimes analysis of all existing variables is so complex that alternative techniques, 
like Learning and Adaptation can provide more efficient ways to achieve the same 
benefits and even to provide a higher level of accuracy. In a future work, we plan to 
implement different analysis mechanisms based on the self-monitoring of Payment 
Broker originated payment transactions and the injection of this data into a feedback 
loop in the Analysis and Planning layers. This historic transaction performance data 
will be used to fine tune the existing heuristics, so a higher level of benefits can be 
achieved. In the long run, additional heuristics could be discovered and be added into 
the main set of rules that govern the analysis of policies. With this approach we hope 
to bring maximum possible savings to merchants and their end customers. 



 Shaping the Future of Online Payment Processing 183 

References 

[IBMAC] IBM Corporation, “An Architectural Blueprint for Autonomic Computing”, http:// 
www-03.ibm.com/autonomic/pdfs/ACBP2_2004-10-04.pdf, October 2004 

[MUWS] OASIS Standards Consortium, “Management Using Web Services”, Parts 1 and 2, 
http://docs.oasis-open.org/wsdm/2004/12/wsdm-1.0.zip, December 2004 

[UML] OMG – Object Management Group, “Unified Modeling Language”, Version 2.0, 
http://www.omg.org/technology/documents/formal/uml.htm 

[MICRO] World Wide Web Consortium, “Micropayments Overview”, http://www.w3.org/ 
ECommerce/Micropayments/ 

[MC]   Payment Service Provider: “MasterCard”, http://www.mastercard.com/index.html 
[VISA] Payment Service Provider: “VISA3D”, http://international.visa.com/fb/paytech/ 

secure/ main.jsp 
[SET] Payment Service Provider: “SET – Secure Electronic Transactions”, http://www. 

oiste.org/ 
[ACH] Payment Service Provider: “ACH – Automated Clearing House”, http://www. 

ffiec.gov/ffiecinfobase/booklets/Retail/retail_02d.html 
[PAYPAL] Payment Service Provider: “PayPal”, http://www.paypal.com/ 
[CYBER] Payment Service Provider: “CyberSource”, http://www.cybersource.com/ 
[PARA]  Payment Service Provider: “ParaData”, http://www.paradata.com/ 
[VS]   Payment Service Provider: “VeriSign”, http://www.verisign.com/ 
[FIRST]  Payment Service Provider: “FirstData”, http://www.firstdata.com/ 
[CITI]  Payment Service Provider: “CitiBank”, http://www.citibank.com/ 



M.G. Hinchey et al. (Eds.): WRAC 2005, LNAI 3825, pp. 184 – 196, 2006. 
© Springer-Verlag Berlin Heidelberg 2006 

Genetically Modified Software: Realizing Viable 
Autonomic Agency 

A.G. Laws, A. Taleb-Bendiab, and S.J. Wade 

School of Computing & Mathematical Sciences 
Liverpool John Moores University 

United Kingdom, L3 3AF 
{A.Laws,A.Talebbendiab,S.J.Wade}@ljmu.ac.uk 

Abstract. Inspired by the autonomic aspects of the human central nervous 
system, the vision of “autonomic computing” arrived with a fully-formed wish 
list of characteristics that such systems should exhibit, essentially those self-
referential aspects required for effective self-management. Here, the authors 
contend that the biologically-inspired managerial cybernetics of Beer’s Viable 
System Model (VSM) provides significant conceptual guidance for the 
development of a general architecture for the operation and management of 
such complex, evolving, adaptive systems. Consequently, the VSM has been 
used as the basis of a theoretically-supported reference model that provides the 
"blueprint" for an extensible intelligent agent architecture. Of course, normal 
use of the VSM relies heavily on human agency to realize the adaptive 
capabilities required by the model. Therefore, artificially replicating such 
activities represents a significant challenge, however the authors show that 
some progress can be made using algorithmic hot swapping and in particular 
Holland’s Genetic Algorithms (GA’s) to generate, in specific circumstances, a 
repertoire of tailored responses to environmental change. The authors then 
speculate on the use of the associated Learning Classifier Systems (LCS) 
approach to allow the system to develop an adaptive environmental model of 
appropriate, optimized responses.  

1   Introduction 

Managerial cybernetics, rooted in the study of the adaptation of human organizations 
in a changing environment, underpinned by classical cybernetics and structured 
around the human central nervous system have long been used to study the viability 
of human systems [1]. More recently and with the advent of the possibility of 
“autonomic computing systems” realizable by adaptive software agents, the need for 
a unifying theory to inform and guide the development of such systems has become 
apparent. It would appear that cybernetic studies have much to contribute in terms of 
a well-established foundation for the development of such systems. In this paper, the 
authors attempt to show both the drawbacks and value of assuming such a position by 
demonstrating the contribution that a cybernetic viewpoint can bring to the 
development of such systems. 
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The remainder of this position paper is organized as follows. The next section 
provides a brief introduction to the managerial cybernetics of Beer’s Viable System 
Model (VSM) [1]. This is followed by the development of a theoretically defensible 
adaptive software architecture realizable by means of multi-agent software paradigm 
[2]. Some drawbacks inherent in transferring the VSM from its normal human-
oriented use to the artificial domain of software systems are noted. The next section 
addresses these concerns by reviewing the classical cybernetics that underpin the 
VSM to demonstrate the appropriateness of the use of genetically inspired approaches 
to provide our target system with elements of “creativity” and “learning”. Such 
approaches are considered in the penultimate section of the paper, which then 
concludes by both acknowledging the inherent limitations of such approaches and 
speculating on the further research opportunities these nevertheless afford. 

2   The Viable System Model – An Architectural Model for  
Self-managing Systems 

The Viable System Model [1], founded on classical cybernetic studies and modelled 
on the human central nervous system, provides a theoretically supported cybernetic 
model of organization. Viable systems may be defined as being robust against internal 
malfunction and external disturbances and have the ability to continually respond and 
adapt to unexpected stimuli. The model specifically attempts to imbue the system 
with the ability to adapt to circumstances not foreseen by the original designer and 
identifies the necessary and sufficient communication and control systems that must 
exist for any organization to remain viable in a changing environment. The major 
systems (i.e. S1s, S2s, S3, S3*s, S4 and S5) are structured hierarchically and 
connected by a central ‘spine’ of communication channels passing from the higher-
level systems through each of the S1 management elements (Fig. 1.). These provide 
high priority communication facilities to determine resource requirements, accounting 
for allocated resources, alerts indicating that a particular plan is failing and re-
planning is necessary and the provision of the "legal and corporate requirements" or 
policies of the system. 

The systems shown in Fig. 1 concern the management structure at one level of the 
system, and consequently specifies the communication and control structures that 
must exist to manage a set of S1 units. However, the power of the model derives from 
its recursive nature. Each S1, consisting of an operational element and it's 
management unit, is expected to develop a similar VSM structure, consequently, the 
structure of systems is open ended in both directions and may be pursued either 
upwards to ever wider encompassing systems or downwards to ever smaller units.  

However, at each level the same structure of systems would occur although their 
detail would necessarily differ depending on context. This recursivity allows each 
level in the organization relative autonomy bounded by the overall purpose of the 
system as a whole. Such cooperation and coordination within and between S1 units on 
the same hierarchical level and between sets of S1's on different levels is provided by 
communication channels operating over an organizational range and tailored locally 
to each viable entity. 
 



186 A.G. Laws, A. Taleb-Bendiab, and S.J. Wade 

However, if the recursion is pursued below the level of human operations then it is 
possible to consider the software system as the next recursive level in the system. This 
strongly implies that the software system should assume the same overall 
management structure as the human process above it. Consequently, we appear to 
have a theoretically supported management architecture both for the human process 
and for “self-managing autonomic software” 

The value of assuming such a viewpoint is in the immediate provision not only of 
the outline architecture that the autonomic software system itself must assume, 
namely that of the Viable System Model, but also the identification of the requisite 
communication links to bind the system to the organization. 

 

Fig. 1. The Viable System Model 

3   An Intelligent Agent Architecture 

We now extend and apply this cybernetic approach and consider an S1 of the VSM in 
terms of an autonomic software system [2]. To demonstrate, a conceptual, 
architectural outline of such a system is determined, using both the principles of the 
VSM and the terminology and design of a classical Artificial Intelligence design, 
namely Bratman et al.'s Intelligent Resource-Bounded Machine Architecture (IRMA) 
[3] as a constructional guide. As shown in Figure 2, the developed VIAA/J-Reference 
architecture embeds a Beliefs, Desires, Intentions (BDI) unit at the S5 level 
representing:    

• Desires - or what the agent wants to do and is taken as a given for the 
moment. 
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• Beliefs - or what the system currently knows and is represented by two 
structures. A model of the external world and a model of the current internal 
status of the architecture. 

• Intentions - or what will actually be done, is determined by a process of 
deliberation, which interprets desires in the light of current beliefs about both 
the environment and the 'stance' of the system.  

S3, using a reasoning process supported by a plan library and the capacity to audit 
the current status of operational S1 units, structures the intentions into plans, these are 
then passed to a scheduling process. The scheduling process, in cooperation with a 
resource bargaining process, responsible for negotiating resource deployment and 
usage monitoring, schedule the enactment of the plan. The schedule passes to the 
coordinating S2 channel for dissemination to participating S1 elements.  

Fig. 2. The J-Reference Model 

Environmental change is addressed by S4, which equipped with an Opportunity 
Analyzer and guided by the S5 desires model, scans the environment for detrimental 
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detrimental occurrences. Plans are then passed to the deliberation process to begin the 
intention forming cycle again. 

As noted above, the power of this approach lies in the recursivity of the underlying 
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recursion informs the desires model in the next, thus allowing an autonomous 
response to local conditions at each level while remaining within the purpose of the 
overall organization. 

While basing such a model on the VSM is an attractive proposition, it is not 
without cost. The VSM, designed for use in human systems, relies in no small part on 
the human agents that populate the model to provide the creativity and learning 
necessary to realize many of the systems advocated. For example, the environmental 
scanning and construction of a model of the environment required by System 4 is 
relatively straightforward for humans but notoriously difficult to achieve in software 
systems. While such modelling may be achieved by software systems in relatively 
small, finite environments, the more open the environment is the more difficult the 
task becomes. However, much conceptual guidance in addressing these problems may 
be derived from the classical cybernetics that underpin the VSM. 

4   Classical Cybernetics Revisited 

While the managerial architecture presented above provides an overall structure for 
the system, classical cybernetics provides the theoretical foundation for the detail 
needed to fill out that framework. Here, we consider the more general lessons learned 
from the cybernetic study of adaptive organisms surviving in a changing environment. 
Central to this approach is the notion of system state, where both the organism under 
consideration and the environment in which it exists are described by sets of variables 
that indicate the current status of each party. Consequently, the environment of the 
organism can be defined as: 

"...those variables whose changes affect the organism and those 
variables that are changed by the organism's behaviour." [4]. 

Similarly, the environmental changes that the system is capable of responding to 
effectively is measured by the number of states that the system can adopt, this 
measure is termed variety, where variety is defined as: 

"the number of possible states of a system." [5]. 

This leads to the view that one form of adaptation is aimed at the maintenance of 
the internal stability of the organism as represented by the state of its critical variables 
or as Ashby puts it: 

"...a form of behaviour is adaptive if it maintains the essential variables 
within physiological limits." [4]. 

To accomplish this, the system must have the ability to influence or cause change 
in other elements that make up the environment. In effect, the system must attempt to 
exert a form of “control” over some part of the environment. However, control can 
only be attained if the variety of the controller is at least as great as the situation to be 
controlled. This is Ashby's Law of Requisite Variety, which simply stated indicates 
that for every environmental action there is an equal and opposite response [6]. 
Moreover, given a range of possible responses to an environmental disturbance, the 
system must “know” which action to select from a variety of available actions; this is 
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the “Law of Requisite Knowledge” [7]. Furthermore, in order to ensure effective 
control or regulation of a controlled situation requires that the controller model the 
situation to be controlled. This requirement, known as the Conant-Ashby theorem, 
states: 

"Every good regulator of a system must be a model of that system."  [8]. 

So ideally, an optimal regulator will be an isomorphic model of the situation to be 
controlled. However, when such isomorphism is not possible as in highly complex 
systems, then the regulator must be, i.e. contain, a homomorphic model of the 
situation. 

5   Algorithmic “Hot Swapping”, Algorithm Generation and 
Learning Classifier Systems 

Equipping our system to conform to the Law of Requisite Variety requires either the 
provision of a response for every possible environmental change, the provision of the 
ability to generate a response or perhaps a mixture of the two. The first option is 
limited in application as it requires the software designer to predict and cater for every 
eventuality the system may encounter and adherence to a consistent 
terminology/ontology, etc. The second option, that of algorithmic generation, whilst 
even more challenging, offers the potential for significant advances in the nature of 
systems development. 

5.1   An Experiment in Algorithmic “Hot Swapping” 

In our first attempt to address Ashby’s Law of Requisite Variety, we first define an 
environmental scenario to which our system must respond. Here, the environment is 
considered to provide a supply of n = 5 element arrays of integers for sorting. This 
approach allows for a closed, highly controllable environment that can range from 
smooth, i.e. relatively small changes between arrays to a highly discontinuous 
environment where subsequent arrays may vary between almost sorted to complete 
reversal.  The system is provided with a finite set of responses to environmental 
change and is charged with the task of matching the most appropriate, i.e. efficient 
response to the current environmental position at runtime. Here, the response set is 
represented by a library of sorting algorithms, each of which is capable of sorting any 
array received from the environment, although not necessarily optimally. To facilitate 
the system in its task, a means is provided that allows the system to determine the 
efficiency of the responses at its disposal.  

In these experiments, the system was provided with the means to time an algorithm 
in execution and hence determine the most efficient algorithm in a given situation. 
This was achieved using the “Zen Timer” described by Abrash [9] and provided as a 
freely available “C” callable library capable of timing code fragments with micro-
second accuracy. Running the system on a 40 MHz, 486 machine allowed for very 
small, highly controllable, 5-element arrays to be used while retaining the timing 
discrimination necessary to determine efficiency. 
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Fig. 3. The environment presents the system with 5-element arrays for sorting. Environmental 
change is represented by degrees of unsortedness in the arrays. The system, provided with a set 
of responses, must determine the optimal response. 

Consequently, the system “experimented” to determine the most efficient response 
to the current environmental stance. Assuming that the environment was changing 
relatively slowly, the selected algorithm was used for subsequent arrays delivered by 
the environment. In order to ensure the currently selected response remained the most 
appropriate, a statistical process control approach was adopted [4]. 
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Fig. 4. The Western Electric Statistical Boundaries 

Using the Western Electric Rules approach, statistical boundaries were set at plus 
and minus 1, 2 and 3 standard deviations from the current mean measure as shown in 
Figure 4 above [4]. 

The following rules were then applied to trigger a further experimental “review” of 
the timed efficiency of the current response. 

• Rule 1: A single point falls above or below three standard deviations 
(beyond Zone A). 

• Rule 2: Two out of three successive points lie in Zone A on one side of 
the mean. 
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• Rule 3: Four out of five successive points fall in or beyond Zone B on one 
side of the mean. 

• Rule 4: Fifteen points in a row fall in Zone C on either side of the mean. 
• Rule 5: Eight points in a row fall on one side of the mean. 

The resulting control chart is shown below in Figure 5.  
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Fig. 5. Algorithmic "Hot Swapping” using statistical process control 

The lowest line on the chart indicates the sort algorithm currently selected, where 1 
= Bubble sort, 2 = Shell sort, 3 = Quick sort, 4 = Insertion sort, 5 = Shaker sort and 6 
= Merge sort, although Quick, Shaker and Merge are never selected in this 
experiment.  

While algorithmic “hot swapping” provides the system with a limited degree of 
adaptive capability, the finite nature of the set of responses constrains the degree of 
optimisation possible. In many respects this approach is akin to a programmer 
predicting the circumstances a system may have to contend with and providing a 
response to each circumstance. A more interesting question is whether a system can 
generate its own set of responses. 

5.2   Algorithmic Generation 

In constructing an approach to this question, a range of genetically inspired 
approaches have been considered. Beginning simply, a repetition with some variation 
of Hillis’s well-known experiments in designing an optimal n = 16 sorting network 
using a genetic algorithm [11] and (incidentally) a Connection Machine [12], as 
described by Mitchell [13] was undertaken. Here as above, the environment is 
considered to provide an infinite supply of n element arrays of integers for sorting. 
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The task is to evolve an appropriate/optimal sorting mechanism using a genetic 
algorithm. In our experiments n = 8 was used although a Connection Machine was 
not.  The manner of encoding the problem and hence the design of an appropriate 
genetic algorithm closely followed that developed by Hillis [12] with obvious 
reductions of scale to account for our more limited experiments. 

In this approach, a sorting algorithm is simply considered as a series of pairs of 
array indices to be compared with the values held in those locations being swapped if 
appropriate. Consequently, the list (0, 6), (3, 1), (2, 4)…represents “Compare the 
value in array location 0 with the value in array location 6 and swap if necessary and 
so on…”.  Encoding comparisons to form a sorting algorithm employed ten 12-bit 
chromosomes. Each chromosome being composed of four 3-bit “codons”, with each 
3-bit codon being capable of holding a binary value between 0 and 7 and 
consequently capable of uniquely identifying one location on an n = 8 array.  

Each 12-bit chromosome therefore holds four codons and hence two array location 
pairs for comparison, e.g. (3, 4) (1, 5). Using ten such chromosomes allows twenty 
comparisons to be stored in total and represents one sorting algorithm. Such an 
encoding represents, in the terminology of genetic algorithms, the genotype or genetic 
constitution of an individual in a population, decoding that genotype and hence 
constructing the individual forms the phenotype or actual representation of the 
individual. All actions are performed on the genotype and reflected in the 
characteristics of the resultant phenotype. 

However and again following Hillis, when the genotype is decoded to form a 
phenotype, rather than simply reading through the ten chromosomes and listing the 
comparisons stored there, a diploid approach is used whereby chromosomes are 
considered in pairs [5]. So, for each of the five pairs of chromosomes in a genotype, 
the comparison pair stored in codons 1 and 2 of chromosome A are compared with 
those stored in codons 1 and 2 of chromosome B. If both encode the same comparison 
(i.e. are homozygous), then only one comparison is realized in the phenotype. If, on 
the other hand, each codon pair in each chromosome encodes different comparisons 
then both appear in the phenotype. The comparison then continues with codons 3 and 
4 of both chromosomes A and B. Eliminating duplication in this manner means that 
the size of the resulting phenotype can vary from a minimum of ten comparisons 
representing maximum duplication, to a maximum of twenty comparisons 
representing no duplications. Allowing variation in the size of algorithms that emerge 
in terms of numbers of comparisons and possible swaps undertaken has obvious 
implications on the efficiency of the resulting algorithms. 

In our experiments, a population of 200 members, each with the above encoding, 
was formed on a 10 x 20 two-dimensional array. The codons of each chromosome 
being populated by a coin-tossing algorithm producing random bits. Each member of 
the population was then tested against 100 test cases drawn from the 40,320 
permutations possible for n = 8. Although no member of the initial population was 
“correct” in terms of being able to correctly sort all 100 test cases, happenstance 
demands that even a random set of comparisons followed by swapping if appropriate 
will occasionally result in an improvement in the degree of “sortedness” of an initially 
unsorted array. Consequently, the “fitness” of each member of the population was 
determined by its ability to reduce the degree of “unsortedness” in the test set. The 
inversions method described by Knuth [10] was used to determine the degree of 
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“unsortedness” in a test array before and after its exposure to a sorting algorithm and 
hence identify any decrease or otherwise. 

Having determined the fitness of each individual in the population, the average 
fitness was computed and those individuals with lower than average fitness culled. 
The resulting gaps in the population were filled with copies of high fitness 
individuals. 

Next, each consecutive pair of individuals in the population contributes one 
offspring to the next generation. As before, a diploid approach was adopted for 
reproduction. Here, each of the five pairs of chromosomes that make up each parent is 
considered. A random “crossover” point is determined for each pair of chromosomes. 
A new “gamete” is produced by taking the chromosomal elements before the 
crossover point of chromosome A and joining them to the chromosomal elements 
after the crossover point of chromosome B to form a new 12 bit chromosome. Thus, 
each parent contributes five such gametes to the production of a new 10 chromosome 
member of the next generation. These reproductive activities continue until a new 
population of 200 newly-formed members is created. Mutation is then applied to the 
new population by randomly flipping bits in the randomly selected chromosomes of 
randomly selected individuals using the standard mutation probability of 0.001.  
Finally, once the new population is complete, fitness testing can resume as before.  

5.2.1   Results 
Our experiments, initially run over 100 generations, showed that a sorting algorithm 
capable of correctly sorting all of the test cases emerged surprisingly quickly.  As can 
be seen in the truncated chart shown in Figure 6 below, the first fully-fit individual 
with a fitness rating of 1 emerged in generation 5 in this particular run. This result 
was replicated in further runs of the experiment with only minor variations in the 
generation that the individual emerged. 

Admittedly, these results were obtained using a relatively gentle environment of 
test cases, running from the “already sorted” test case represented by the test array “1, 
2, 3, 4, 5, 6, 7, 8” with an “unsortedness” rating of 01 to the “partially sorted” case of 
“1, 2, 3, 7, 8, 6, 5, 4” and an unsortedness rating of 9. Using a more severe test set 
running from an unsortedness rating of 19 and represented by the test array “8, 7, 6, 2, 
1, 3, 4, 5” to an unsortedness rating of 28 representing a “complete reversal” of the 
array “8, 7, 6, 5, 4, 3, 2, 1” caused the system some problems, with no fully-fit 
individual emerging although 97% of test cases in this set were correctly sorted. 

These shortcomings notwithstanding, a number of interesting points emerge from 
these experiments. The fact that a correct algorithm emerged so quickly, even in such 
small scale, benign experiments was surprising. Arguably, once a fully-fit individual 
is identified, an appropriate response to, at least this region of the environment, has 
been rapidly discovered and the process could terminate. However, in the course of 
the remaining generations, the system continued to “discover” new approaches to 
dealing with these test cases, with a variety of algorithms emerging displaying greater 
or lesser homozygous duplication. One fully-fit individual emerged that used the 
minimum number of comparisons, i.e. ten; to sort the test cases, while others were 
discovered using a range of comparisons between 10 and 18. 

                                                           
1 Using the inversions method described by Knuth. 
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The Emergence of Fully Fit Individuals in the Population
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Fig. 6. Fully-fit individuals attributed with a value of 1 and capable of correctly sorting all 100 
test cases emerge very early in the generation process 

This implies that the system could quickly derive an appropriate response to an 
environmental region while continuing to search for more optimized responses. 
Indeed, in these experiments, no explicit selective pressure was used to develop 
minimal, correct sorting algorithms, although clearly it could be. This, of course, 
raises the possibility of automatically deriving a portfolio of algorithms each 
optimized for a specific area of the environment and offering enhanced sorting 
performance over a universal sort algorithm.  

Of course, except in specific circumstances, such an approach is clearly unsuitable 
for general application. Even the encoding used in the experiments reported here 
demonstrates the fragility of the approach. Here, a 3-bit codon randomly filled with 
bits always results in an integer value between 0 and 7 and can subsequently be used 
to access an 8 element array. It is not so easy to make such arrangements for a 10-
element array. Nevertheless, such experimentation helps to determine the limits of 
applicability of such approaches and lays the foundation for further work in 
associated fields such as genetic programming [14] or Artificial Immune Systems 
(AIS). 

Having generated a repertoire of responses, it is still necessary for the system to 
develop the appropriate knowledge to use each response appropriately, i.e. conform to 
the Law of Requisite Knowledge. Holland’s Learning Classifier Systems (LCS) [11] 
provide a means whereby such knowledge may be developed. Such systems are 
constructed using; detectors to convey the state of the environment to the system, a 
rule and message system where messages are used both for internal processing and to 
direct the system’s effectors that act upon the environment, an apportionment of credit 
system that, using some measure of performance provided by the environment, 
apportions that credit to participating rules and a genetic algorithm to develop new 
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rules. Rules are formulated in if <condition> then <action> sets and 
those that match the condition reported by effectors compete to contribute in the final 
action reported by effectors. Rules accrue or lose reward depending on the success or 
otherwise of the outcome reported by the environment. New rules can then be 
genetically derived from already proven effective rule sets.  What emerges is an 
adaptive model of the environment of the system encapsulated in effective rules, 
essentially the system learns to adapt to the environment in which it resides. 

6   Conclusions 

In this paper, the authors have presented a conceptual architecture derived from 
managerial cybernetics and suitable for the operation and management of autonomic 
software systems. While noting the drawbacks inherent in applying a human-oriented 
model to artificial systems, it has also been shown that the theoretical basis of the 
model is resilient enough to point to existing techniques that may be used to begin to 
address these shortcomings and progress this work. 

What emerges is, in some respects, a unifying, hybrid architecture that populates 
the structured, model-based architecture implied by the J-Reference model, with the 
“swarm-based” nature of genetic approaches. Of course, much remains to be done, the 
genetic experiments reported here suggest that using selective pressure to produce 
minimal sorting algorithms may have interesting results and the use of genetic 
programming promises a much more generalized approach. Similarly, the LCS 
approach appears to support the development of incomplete though adaptive models 
of the environment that lay the foundations for more sophisticated uses such as 
anticipatory system pre-adaptation. 
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Abstract. In this paper we argue that self-modifying code can become a
better strategy for realizing long-lived autonomous software systems than
static code, regardless how well it was validated and tested. We base our
discussion on three facets – self-repairing software, adaptive software
and networked systems – for which we point out ongoing and related
work before presenting a roadmap towards a controlled framework for
self-modifying code.

Keywords: Resilient software, self-healing protocols, computational
agents, autonomic communication.

1 Introduction

In a famous article series in Scientific American from 1984, Dewdney introduced
the “core wars” game [1]: Imprisoned in a small memory bank, two programs fight
against each other by peeking and poking into the adversary’s memory cells and
by taking care of retaining the own software’s integrity through repair actions or
dislocation. On the hardware side, von Neumann considered unreliable logical
gate implementations and showed in 1956 how to use redundancy to achieve
fault tolerance despite defective execution elements [2].

These examples illustrate the simple idea that the road towards robust soft-
ware starts with the humble assumption that no system or software is perfect and
therefore any of its parts may fail. While mission-critical systems have considered
robustness and fault-tolerance techniques at the core of their design, solutions
are still lacking for light-weight and widely deployable autonomous software that
is resilient and able to survive unsupervised in a large spectrum of situations.

One can imagine scenarios requiring autonomous distributed systems, where
large networks of small devices must run unsupervised during a long period of
time, such as sensor networks and embedded networks of pervasive computing
devices, but also constellations of spacecrafts sent to distant outer space regions
where ground control from Earth becomes impractical even for non real-time
actions [3,4].

Two notions are combined here: adaptability and resilience. Ideally, a fully
autonomous software system system should continuously update itself, recov-
ering from failures and adapting to new situations. Since no realistic software
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system could possibly anticipate all future situations, such updates necessarily
include changes to the system’s own code base. Today these changes are largely
performed off-line either by humans or in a semi-automated way with the help of
software engineering tools able to generate parts of the code. Hardware oriented
hardening techniques have received continued attention since von Neumann’s
work – most recently in quantum computing where inevitable execution noise
has to be compensated through error correcting quantum execution circuitry.
On the other hand, software oriented solutions have targeted fault tolerance by
adding instead of changing components: A fully software based solution that
considers memory, communication and execution errors and which provides self-
healing capabilities is still lacking. We believe that self-modifying code, although
banned from computer science because it is difficulty to debug and to assess its
correctness, will play an important role in this quest.

Before discussing a roadmap towards a better mastering of self-modifying
adaptive and resilient software, we show in three fields (soft errors, software
adaption, mobile code) where software resilience has been envisaged and how
self-modifying code comes into the picture.

2 Handling Soft Errors in Software

Soft errors are transient faults due to radiation (particles discharging a semi-
conductor capacitor) or other low level physical phenomena (noise in a quantum
computing device). The effect is that either state is altered or instructions are
incorrectly executed. An important counter measure against such incidents is
to apply systems-level i.e., hardware changes. For example, memory cells store
data in an error correcting code format that can revert a limited number of
bit flips. Similarly, quantum computing circuits have been proposed that permit
error correcting execution, hence masking away low level errors.

However, it is also possible to mitigate or even neutralize soft errors by soft-
ware techniques alone. In [5], a compiler is described that schedules redundant
instructions such that additional comparison instructions can detect whether an
execution thread encountered an error or not. This code transformation approach
relies on a reliable memory subsystem, but other proposals have been made that
also include memory in the “sphere of replication”. The SWIFT approach in [5]
targets bit failures and applies to programs that can be recompiled. Low-level
errors are again masked away and the program itself is not made aware of them.
A small time window remains just after validation where validated state could
be corrupted unnoticed, hence the sequential character of the execution environ-
ment becomes visible. Another weak point is that (erroneous) store operations
are not observable.

Clearly, these software-implemented fault tolerance techniques can be applied
to a software system at design time. We note however, that at run-time, the prob-
ability of fatal failure after an uncatched soft error (e.g., because too many bits
were flipped etc) is high as the program itself relies on the installed safe guards.
Such unnoticed errors will accumulate if no other self-checking mechanisms
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are put into place. In addition to run-time only detection of execution errors, a
software system should periodically verify its integrity and, if necessary, regen-
erate its own code base and memory (self-healing). This is further complicated
if the software is capable of adapting to new situations (see next section), or
is extended with imported functionality (see section 4 on networking), so that
there is no constant reference point to which the current state of the system
could be compared to. Overall, changed, imported or regenerated functional-
ity are all special cases of self-modifying code, although at different levels of
programmability1.

3 Beyond Planned Adaptation–Run-Time Software
Evolution

The ability to adapt to new situations is an essential property of any system
that is expected to operate unsupervised. Adaptive software systems capture in-
formation from their environment and make changes in their internal structure
in order to achieve a desired performance in that environment. These changes
are performed according to an adaptive plan [6], which determines the trans-
formation operations to be applied to the current structure to obtain a new
one.

No matter how comprehensive an adaptive plan might be, in terms of covering
the space of possible combinations of environment state variables, there will
always be cases that have been left out of the plan, or for which the plan is
not sufficiently reactive. Those cases generally call for humans to intervene and
upgrade the plan.

A change in the environment that had not been predicted at design time causes
one or more system components to become imperfect because they are no longer
well adapted to the task at hand. The system must then diagnose and correct
these imperfections, making the components suitable again. The same behavior
leads to both adaptability and resilience. The central question is then how to
automate this diagnose and repair process, not only for the system configuration
but also for the running software. In other words, how to build software that
genuinely evolves to correct itself and to match new expectations.

Structures that are subject to adaptation also include programs. A common
technique applied to adapt programs is genetic programming (GP), in which
programs are modeled as genetic material (genotype) and the adaptation plan
consists in the way to apply genetic operations (e.g. crossover, mutation) to a
population of programs to obtain new ones. GP can potentially cover a large
environment space with a very simple plan, due to its problem-agnostic adap-
tive plan and high parallelism of solution search. However, it is slow to react
due to the random nature of the code transformation operations, which cannot
1 Note that the SWIFT approach collides with self-modifying code (at the level of

CPU instructions): the compiler will not be able to apply appropriate resilient code
transformation at compile time as the code to protect will only become available at
run time.
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ensure viable programs. Non-viable programs can only be detected after they
obtain a low fitness value during execution. This limitation has prevented GP
from being applied to running programs. However, in a resilient system as the
one we describe below, invalid programs could be detected and eliminated with
minimum impact in the system. GP would then become feasible in these sys-
tems, and we have started to explore this path in [7]. The question remains open
whether improved genetic operators could be found to accelerate the search and
to increase the likelihood of viable results, while at the same time keeping the
plan to a minimum.

Formal techniques have been applied to generate code from specifications [8,9],
however the focus has been on software engineering where tools are not fully
automated and not directly applicable to running code. The adaptive plans re-
sulting from these techniques are likely to become complex.

The quest for minimum plans is directly related to the quest for fully resilient
software, with no “fixed” parts that cannot be adapted. The plan is one such
fixed part, since the plan itself is not part of the structures subject to adapta-
tion. Although GP plans are already small, researchers have taken steps towards
reducing them even further by incorporating GP parameters into the genotype
of the individuals being adapted [10], therefore including part of the plan into
the adaptive structures themselves.

4 Networking and Mobile Software

Now consider the case of self-modifying distributed software, such as a distrib-
uted system or a network protocol stack. One can easily anticipate the difficulties
in keeping the different pieces of the software fully functional and compatible,
such that they can run in a consistent way to provide the intended service.
Once a new software has been generated, it must deploy itself, i.e. ship its own
constituent parts to the regions of the network where they are necessary. Code
mobility is therefore a natural and essential ingredient of distributed and adap-
tive software.

The desired joint resilience/adaptability property discussed so far for a single
system needs to be extended to the distributed context as well, creating robust
distributed execution circuits that can recover from several disturbances such as
message loss, losses of parts of their code base in different parts of the network,
transient inconsistencies and temporarily unsuitable code portions.

Attempts on code mobility include active networking and mobile software
agents. The main aspect of these approaches is the late binding of functionality
which permits the adaptability to network conditions and user requirements at
run time. Because they focus on the run-time-deployment of new (but fixed)
functionality, existing mobile code systems like [11,12] cannot be easily used to
build the robust self-healing execution circuits that we are aiming at. The main
reason for that is the lack of access to the representation of the code itself, which
would permit self-modification. Mobile code systems like M0 [13] have been
proposed where a program is able to access the representation level of mobile
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code units, leading to the possibility to create (compute) new code pieces at run-
time. Such an expressiveness permits a much deeper degree of self-modification
and enables otherwise not implementable protocols like e.g., self-compressing or
self-fragmenting mobile code units. Moreover, because of safety concerns (and the
implicit virus-like nature of mobile code), programming languages and execution
environments like [11,12] have been deliberately restricted which removes the
ability to write self-modifying mobile programs.

More advanced yet more secure functionality based on self-modifying code
could be permitted if there was a methodology to generate safe self-modifying
programs. One currently hypothetical option would be to design an environment
for mobile specifications (instead of mobile code) that can capture the essence
of self-modification but leaves the actual implementation to a safety-property
preserving run-time code generation mechanism. In the following section we
come back to this aspect of run-time code generation, where code is not only
generated once but every time before it is executed.

5 A Roadmap for Self-modifying Code

We see three related research challenges where more insights for using self-
modifying code are needed:

– execution models,
– software regulation techniques, and
– self-modifying code generation methods.

A crucial element and research target for resilient software is an appropri-
ate execution model and the question how such an environment supports self-
modifying code. The execution model encompasses the properties of the memory,
the execution part as well as the communication primitives. From results in fault
tolerance it seems that the parallel execution of activities is an essential element
of an execution model. However, first results (discussed in Section 2) show that
soft error resilience can also be achieved inside a single-threaded sequential ex-
ecution environment (although preventing self-modifying code). Regarding the
effective implementation of resilient software, more research is needed to under-
stand the requirements on the execution model.

In our research so far we have been working with tiny computational agents
that we call Fraglets [14]. Fraglets are concurrent computation fragments similar
to chemical molecules such that they can operate on each other. Code and data
are processed by reactions between Fraglets, thus putting code self-modification
at the heart of the execution model.

In Figure 1 we present a Fraglet inspired execution model that shows essential
processes for a purely software-based resilience approach. The software system
is placed in a hostile environment where memory faults (soft error, but also loss
of memory content due to programming errors or contention for memory), exe-
cution errors (altered code, either transiently or permanently) and transmission
errors will occur. Talking in networking terms, it suffices that this hardware
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Fig. 1. Execution model for resilient and self-modifying software

offers best effort services, memory as well as execution wise. The software is or-
ganized in parallel activities, shown as separate execution circles. Activities are
basically execution circles because we are working with continuously operating
autonomous software.

One hypothesis in our model is that “code” is not permanently installed but
is explicitly generated when it is needed. Moreover, Fraglet code is consumed (by
executing it), which has the advantage that execution of accidentally modified
fraglets is not repeated. Special copy processes (dashed line) are responsible for
procuring the code when it is needed2.

A resilient code repository, shown as a box in Figure 1, could be implemented
as specially hardened read-only memory. However, due to our interest in online
software evolution, we envisage that the repository is implemented with Fra-
glets, too: One or more continuous processes watch over the code’s integrity and
interact with the code expression requests from the copy processes.

The challenging part of such an execution model is the design of the code
generation control loop that regulates code expression. Fraglet execution should
be shadowed by signals (in form of Fraglets) which permit to assess its success or
failure. A lost Fraglet execution would be compensated by the recreation of the
corresponding Fraglet instance. But also excess executions due to accidentally or
deliberately interfering processes (bugs or viruses) could be handled by lowering

2 When comparing this model to the SWIFT approach (or any classical von Neumann
CPU, see the discussion in Section 2 on soft error resilience with SWIFT), we note
the similarity in the code copy operation which happens between the memory and
the CPU: in SWIFT the code is copied instruction wise. In classical CPUs the code
copy process (instruction fetch) is hardwired and cannot be altered.
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the rate at which Fraglets are expressed. Thus, we believe that for continuously
running software we have to develop code regulation techniques for highly in-
terdependent computations such that all code related errors can be handled in
a much more elastic way than the current run-or-break property of sequential
programs.

The third research challenge relates to the safe exploitation of the available
code self-modification mechanisms of such an execution environment. Ideally, one
wants to let a system evolve through its internal code modification procedures
while still being assured about long term invariants. Research in programming
languages has produced “tamed” versions of self-modification e.g., in form of
reflection or the lambda calculus. However, unreliable execution as well as code
mobility are not accounted for. We are also not aware of a theoretical framework
for code transformations that target self-modifying code and which could, for
example, capture self-fragmentation or the dynamics of code regulation.

6 Conclusions

Autonomous software which runs unattended and perpetually should be able to
adapt to unforeseen situations and to cope with drastic error conditions at all
levels, including external memory and execution faults as well as buggy soft-
ware components. In this paper we pointed to the properties of adaptability and
resilience that such a system must have and opt for a fully software based so-
lution. We argued that important techniques for implementing it boil down to
mastering self-modifying code, for which we presented a framework and research
roadmap.
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Abstract. This paper introduces a reference architecture for developing agent-
based systems that preserves core concepts of agenthood while minimizing 
cumbersome features found in other agent architectures. This parsimony has 
been found useful in addressing complex problems. 

1   Introduction 

With the proliferation of agent-based systems in every type of complex, mission 
critical system there is a need for a reference architecture that capitulates essential and 
salient ingredients of agent-based systems. This reference architecture can be used as 
a guide to organization and design of specific agent-based systems (Gazi, et. al., 
2001). In this paper we primarily focus on the salient components and interfaces of 
such an architecture as we aim to offer a reference architecture in the spirit of James 
Albus’ RCS. A reference architecture is not a blow by blow specification but rather an 
educated guide for conceptualization. Specific methodologies and operational notions 
that elaborate our reference architecture will vary among classes of problems. To 
illustrate this, we briefly outline two case studies in the latter part of this paper.   

We take an Agent oriented software engineering approach in exposition of our 
reference architecture. Agent-oriented software engineering is a proper subset of 
software engineering (Wooldridge, 2000) with emphasis placed on interactions and 
relationships among entities we’ll call agents. To make explicit agents we offer five 
guiding principles. First, agents are entities in the problem domain as opposed to 
models of functional abstractions. More specifically, agents encapsulate computa-
tional units that determine plans and actions as well as the process of exhibiting 
acting. Second, agents are properly sized so they model entities that are rather modest 
in mass and time. We are not suggesting to model midgets.   Rather, we are arguing to 
consider acting units in such a way that  the system being modeled will map to a finite 
number of agents in order to allow us to meaningfully focus on modeling interesting 
interactions and relationships. If the agent granules are fairly large we would not have 
the opportunity to examine intricacies of interagent interface. Since an aim in 
designing agent-based systems is distributed intentionality, our third principle is that 
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agents should be considered to own their local intentionality. System intentionality 
should be properly divided into a series of proper sets so they can be mapped to 
intentionality of agent communities and the smallest units map to individual agent 
intentionality. Our fourth agent design principle is coherent dissemination of 
information, knowledge, and wisdom. Agents should be provided with methods for 
caching and sharing results of individually (i.e., locally) processed and fused data. 
Properly designed dissemination methods will offer cohesion so that the set of agents 
will act as a whole, i.e., a hive-mind. Although it is beyond the scope of this article, 
we need to point out the need for shared or disparate ontologies among groups of 
agents (NCOR). A more elaborated consideration needs to account for delineate 
ontology mediation by agents themselves or designated agents. Our fifth principle 
suggests to consider agents operating in sufficient independence as if they operate in 
parallel. Despite the obvious need for interdepedendence among agents in any 
complex system and hence models of relationships and interactions suggested herein, 
agents need to be designed to operate concurrently as opposed to sequentially. The 
large number of agent architectures in existence does not imply maturity in the 
discipline. Instead, it reflects a rush to capture and document features of interest.  In 
the following section we will review agent architectures and propose a need for 
parsimony and a return to original conceptions of modeling agents. 

2   Agent Architectures 

One of the earliest and the most influential agent architectures is the BDI paradigm. 
The Stanford group of researchers in mid-1980s suggested capturing mentalistic 
notions such as belief, desire, intention (Bratman, 1987, Muller, 1997, Rao and 
Georgeff, 1998).  There was a heavy leaning toward grounding BDI in formal modal 
logics partly to inherit the properties of soundness and completeness and partly to gain 
expressive power of treating BDI as modalities. The expressive power gained came at 
the expense of lack of tractability. Along with many researchers we have implemented 
a limited form of BDI in our labs with partial satisfaction.  The best known 
implementation is often attributed to Kinney and Georgeff, 1991). BDI shortcomings 
are well-documented and we will avoid repeating them here. Instead, we point to the 
need to preserve Bratman’s claim that rational agents strive to adopt and maintain 
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Fig. 1. OARCL Components 
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conflict-free intentions. All rational agent reasoning will service for avoid detraction 
from adopted intentions and on methods for manifesting desired objects of intention. 
We wish to explicate the primacy of intention with the need for attention as we will see 
in the following section. A more pragmatic agen t architecture is MaSE (DeLoach, 
et.al., 2003). Rooted in BDI, DeLoach has not only provided expressive power of 
modeling roles and communication in MaSE but also provided a blow by blow 
methodology that was lacking in BDI. Tropos is a recent agent architecture that offers 
both a methodology and rich expressivity (Giorgini, et.al., 2004). 

3   OARCL Reference Architecture 

OARCL is comprised of Observe, Attend, Reason, Communicate, and Learn 
(OARCL) components. Similar to the OODA loop concept proposed by Col. John 
Boyd (Richards, 2004), it is complex and involves many internal loops and nontrivial 
processes that supervise and keeps the system inline with various measures of 
effectiveness and performance. There are abundant asynchronies and nonlinearities 
(see Figure 1). One of our aims in introducing Oracle is to urge a return to the original 
conceptions of agents, which were anthropomorphic modeling of a sense of acting. 
Another aim is to put in the spotlight the salient properties of agency by Oracle 
components.  At a metaphorical level, an OARCL agent is a cognitive entity with 
functionalities suggested by pre-attentive functions captured in the module Observe, 
attention generation and maintenance in the module Attend, inferential capabilities in 
the component Reason, intentional message generation in the module Communicate, 
and abilities to modify perception, attention, and reasoning processes in the 
component we call Learn. Next we provide general description for each component. 

In order to coarsely filter out irrelevant data, the Observe component performs 
agent input data distribution management functions. Agent who live in a highly 
distributed environments need to control the volume and the nature of input they 
process. We choose to consider the tasks of what kind and how much data to process 
as a pre-attentive function of an agent. The best example is human visual processing 
where visual input is rapidly and automatically filtered. Supported by recent findings 
in human visual processing that suggests attention plays an important cueing role 
even in early, preattentive visual stage we have selected that as our next component 
(Healey, et.al,.1993) . 

Attend receives references from the human supervisor, all agent requests from the 
Observe component as well as from the Communicate module. References might be 
associated with specific sensory-identified objects or targets or it might be in terms of 
features, patterns, and conditions. The selection process, which includes nontrivial 
reasoning is modeled in this component. We will deliberately leave out discussion of 
the obvious connection between attention to awareness and consciousness (Crick, 
1996). Despite this omission, we point out that this connection is the most elusive, 
intriguing, yet essential character of agency. There is an inextricable relationship 
between defining characteristics of independence and pro-activity of computational 
agents and self-awareness encapsulated in attention. The notion of individuality in 
attention plays a crucial role in guiding as well as controlling inference and logical 
reasoning. The rationality principles of Allen Newell and Nick Jennings are addressed 
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in our reason module (Boman and Van deVelde, 1997). The reason component 
performs the primary inference in OARCL agents. 

Communicate  performs external information management including the speech act 
using standard agent communications language (ACL) for outputs (e.g., requests) and 
input information and requests from other agents.  

Finally, the Learn component generates performance assessment that drives its 
process management of all agent components. Next, we will discuss applications that 
lead to development of our reference architecture.  

One of the problems that motivated Oracle was the SIGINT man on the loop with 
the aim to design an agent-based software that aids and automates intelligence 
analysis, technically known as SIGINT analysis (Hollywood, et.al, 2004). The 
SIGINT activity encompasses all of command, control, communications, human 
intelligence, surveillance, and reconnaissance. The second motivating problem was 
modern disaster response with the aim to design an agent-based software that fuses 
information at varying levels of abstraction in order to rapidly assess situations at a 
high level. Our approach preserved the highly distributed and disparate loci of 
information gathering and synthesis.  

Next, we review Oracle modules and briefly discuss the software engineering tasks 
therein. For Observe one must broadly gather techniques for selecting data sources 
and channels with details beyond the scope and interest of this paper. Attend for both 
problems must be flexible to allow for changes in the human analyst’s goals and 
targets. Generically, a human analyst will set and revise conditions and targets of 
interest for the remainder of the system (shown in Figure 1). The reference points 
selected in attend will be used to place filters on data gathered by Observe.  Reason 
will need to identify threats and opportunities of interest n the command and control, 
which is the core function of a typical human analyst.  

Communicate will consist of (a) all conditions for triggering messages to other 
system functions in support of SIGINT as well as disaster response, and (b) types and 
formats of messages corresponding to triggering conditions. 

Finally, Learn will embody metrics and sets of adjustments for internal functions 
as well as interactions among Oracle modules. 

4   Conclusion 

Oracle is both a call to return to original conceptions of agenthood and agent-based 
research as well as a reference architecture for designing agents in an agent-based 
system. Our outline here is very concise and does not offer a detailed methodology. It 
also does not provide properties found in aspect –oriented paradigm.  
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Abstract. We address tactical behaviors of unmanned ground vehicles
(UGVs) and focus on their coordination within hierarchical units. This
research thus addresses multiagent systems but more particularly struc-
tures where autonomous parts coordinate to form wholes that in turn
are parts in more inclusive wholes. To capture these notions, we intro-
duce the concept of a holarchy (a hierarchy of holons, which are both
parts and wholes) and use an enhancement of the Statechart notation
called Parts/whole Statecharts. We relate aspects of this notation to the
technical notion of common knowledge, which is a necessary condition
for coordination, and we sketch techniques for building holarchic models
using Parts/whole Statecharts. An implementation of one such model in
Matlab’s Stateflow tool is sketched.

1 Introduction

With increased use of military unmanned vehicles, there is a critical need to
model the behaviors of units of unmanned vehicles to facilitate development of
coordination protocols and tactical policies that are effective in adverse situa-
tions. We address tactical behaviors [1] of unmanned ground vehicles (UGVs)
and focus on their coordination within hierarchical units. This research thus ad-
dresses multiagent systems but more particularly structures where autonomous
parts coordinate to form wholes that in turn are parts in more inclusive wholes.

In the next section, we introduce the notion of a holarchy, which captures the
required idea of parts and wholes. We also present a military reference model
architecture based on this notion and an outline of tactical behaviors. And we
introduce the enhancement of the Statechart notation (called Parts/whole State-
charts) that we use for representing holarchies formally; we relate aspects of this
notation to the technical notion of common knowledge, which is a necessary con-
dition for coordination. In section 3, we discuss a model implemented in Matlab’s
Stateflow tool that uses the conventions of Parts/whole Statecharts to capture
the holarchic structure of a UGV section. In the next section, we sketch tech-
niques for building holarchic models using the Parts/whole Statechart notation.
Section 5 concludes and discusses future work.
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2 Background

We here introduce the notion of a holarchy and present a military reference
model architecture based on this notion and an outline of tactical behaviors. We
also introduce Parts/whole Statecharts, which we use for representing holarchies
formally; we relate aspects of this notation to the technical notion of common
knowledge.

2.1 Multiagent Systems and Holarchies

Wooldridge defines an agent as a computer system capable of autonomous action
that meets its design objective in the environment in which it is situated [2]. An
agent is autonomous in the sense that it has a say in whether and how it responds
to a request. Multiagent environments, according to Huhns and Stevens, “pro-
vide an infrastructure specifying communication and interaction protocols [3],”
and coordination is critical in the functioning of a multiagent system. Complex
coordinated operations, however, require social organization about which the
general multiagent-system paradigm is mute. Social institutions with efficient
communication and control have hierarchical structures. Simon [4] has noted
how hierarchy defeats complexity not only in terms of our understanding of sys-
tems but also in terms of the stability of the systems themselves. If, however,
an institution is to succeed in novel situations, the components in its hierarchy,
all the way down to the individuals with no command responsibilities, must be
given the initiative within certain bounds.

To analyze coordination hierarchies of agents, we use Koestler’s notion of a ho-
larchy [5], which is a hierarchy of holons. A holon is both a whole (self-assertive)
and a part (cooperative). “Holon” is a combination of the Greek word “holos,”
meaning whole, and the suffix “on,” meaning particle or part. Koestler viewed
holons as filling roles and as defined by fixed rules and flexible strategies, as
best illustrated perhaps by language, which has fixed grammatical rules yet sup-
ports endless forms of conversation. In engineering domains, holarchies appear
mostly in the form of holonic manufacturing system (HMSs) – see, e.g., [6,7]
– which provide ways to organize manufacturing systems so that key elements
(i.e., holons), such as machines, plants, products, personnel, and departments,
have autonomous and cooperative properties. A HMS is highly agile because
the holons coordinate their activities with each other and are not centrally con-
trolled. Problems extensively addressed in the literature include defining holons
for a given problem and designing efficient communication and coordination pro-
tocols.

2.2 4D/RCS Reference Model and Tactical Behaviors

The 4D/RCS architecture [8] is a complete reference model for UGVs consistent
with military hierarchical command doctrine. A generic control node, called an
RCS NODE, is the building block for all the hierarchical control levels and en-
ables intelligent behavior. Figure 1 is a block diagram of a 4D/RCS reference
model for a notional Future Combat System (FCS) battalion. Each RCS NODE
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is an identifiable part of the 4D/RCS system that has a unique identity yet
is made up of sub-ordinate parts and in turn is part of a larger whole. The
RCS NODE satisfies Koestler’s definition of a holon [5]. In particular, each
RCS NODE is both self-reliant and cooperative.

Fig. 1. A 4D/RCS Model for a Battalion

According to the U.S. Army [1], a movement formation is the configuration
of the vehicles in a unit while a movement technique is a method used by units
to traverse terrain. In our domain, a UGV may assume one of two roles, Lead
or Follower. A section assumes one of three movement formations: Column (one
after the other), Staggered Column (the same but staggered), or Line (one beside
the other). And it assumes one of three movement techniques: Traveling (fast
with little security), Traveling Overwatch (where the trail covers the lead, giving
greater security with less speed), or Bounding Overwatch (the most secure and
slowest).

2.3 Parts/Whole Statecharts

A holarchy is a concurrent structure, and the most popular automata for model-
ing concurrent systems are Statecharts [9], a visual formalism for the behavioral
description of complex systems that extends classical state diagrams in several
ways. A superstate that contains substates and transitions that elaborate its se-
quential behavior is called an XOR state since, when it is active, exactly one of its
substates is active. A superstate that contains concurrent substates –“orthogonal
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components”– is called an AND state. A basic state has no substates so is nei-
ther an XOR nor an AND state. A transition has a label e[c]/a indicating that,
when the system is in the source state, condition c holds, and event e happens,
then it can move to the target state on performing action a; the condition and
action are optional. A transition may have a non-basic state as either its source
or target. Frequently, the condition indicates that an orthogonal component is in
a given state. Finally, a history pseudostate (denoted by H) may be included in
a state. It indicates that, when the state is re-entered, the substate that was last
active should again become active. The hierarchical structure of a Statechart
makes it easy to suppress detail (zoom out) or to focus on detail (zoom in).

For example, consider the Statechart in Figure 2. The overall state, s, is an
AND state: the system must be in both its orthogonal substates, u and v. States
u and v are XOR states. In state u, the system must be in either m or k (but
not both). Similarly for states m (sub-states n1 − 2) and v (substates p1 − 4).
An arrow starting from a darkened circle points to the default initial substate of
an XOR state. The label on the transition from k to m indicates that, in state
k, if event a1 happens, the system can move to state m on performing action b1.
Likewise for the other transitions. An action done by one orthogonal component
can be a triggering event for another. E.g., when component u transitions from k
to m, it performs action b1, which is the triggering event for component v when
in state p1 (which may then transition to state p2).

a1 / b1

a4 / b4a3
 / 

b3

a2 / b2

s
u

m
n1

n2

k

b1 / c1

d3
 / 

a3

d1 / a2

b4
 / 

c2

d2 / a4

v
p1

p2

p3

p4

Fig. 2. Statechart Example

The Statechart formalism is characterized not only by hierarchy (XOR states)
and orthogonality (AND states) but also by broadcast communication: an action
in one orthogonal component can serve as a triggering event in other components.
This is one way components of a Statechart are implicitly coordinated. Other
ways are by transition conditions that test the state of another component and
by using the same event as a trigger in transitions in different orthogonal compo-
nents. This implicit coordination introduces a web of references and eliminates
encapsulation. We therefore follow Pazzi [10] in using an explicit approach to
modeling aggregate entities, introducing a whole as an orthogonal component on
a par with the parts that are coordinated. A part communicates only with the
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whole, never with other parts. As an example, the Statechart in Figure 2 can
be converted to a Parts/whole Statechart by adding (to the AND state s) the
whole shown in Figure 3 and relabeling events a2, a3, and a4 in u as wa2, wa3,
and wa4 and events b1 and b4 in v as wb1 and wb4. Statecharts usually do not
involve the decomposition of aggregate entities to more than one level, but with
Parts/whole Statecharts this becomes natural. A parts/whole Statechart thus
supports two kinds of hierarchies, XOR hierarchies and parts/whole hierarchies,
the latter modeling holarchies.
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Fig. 3. Constructing a whole

2.4 Common Knowledge

Since the purpose of the whole is coordination, we relate the whole in a team
or society to behavior that rests on common knowledge, which is a necessary
condition for coordination [11]. The notion of common knowledge was introduced
in the 1960s by the philosopher David Lewis. In game theory, games of complete
information assume that players’ strategies and payoffs are common knowledge,
while games of perfect information assume that players’ moves are common
knowledge. Common knowledge has also been used in the analysis of protocols
in distributed systems [11]. Recent work in psycholinguistics [12] emphasizes
coordination, hence common knowledge, in conversation.

Where φ is a proposition and G is a group, it is common knowledge in G
that φ if everyone in G knows that φ, everyone in G knows that everyone in G
knows that φ, and so on for arbitrarily deep nestings of the operator “everyone
in G knows that.” For example, for traffic lights to serve their purpose, it is not
enough for everyone to know that red means stop and green means go. It must
also be the case that everyone knows that everyone knows this. Otherwise, for
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example, no one could enter an intersection with confidence on a green light.
The notion of common knowledge can be analyzed more perspicuously in terms
of a fixed point. Let EGφ mean that everyone in group G knows that φ, and
let CGφ mean that it is common knowledge in G that φ. Then we can define
CGφ as the solution to the logical equivalence CGφ ⇐⇒ EG(φ ∧ GGφ), which
characterizes CGφ as a fixed point. We can also characterize common knowledge
(following Clark and Carlson [13]) in terms of shared situations, which in some
sense embody this fixed-point equivalence. Assume that A and B are rational
agents. Then we may infer common knowledge among A and B that φ if (1)
A and B know that some situation σ holds, (2) σ indicates to both A and
B that both A and B know that σ holds, and (3) σ indicates to both A and
B that φ. Barwise [14] concluded that the fixed-point approach is the correct
analysis of common knowledge, but that common knowledge generally arises via
shared situations. Indeed, a situation “provides a stage for maintaining common
knowledge through the maintenance of a shared situation.”

3 A StateFlow Model

We sketch a Parts/whole Statechart modeling the movement formations and
techniques of a section of military UGVs. This Statechart was implemented in
Stateflow, an interactive Statechart design tool integrated with MATLAB and
Simulink. We consider a section formed of two UGVs (the lead and follower). The
section’s task is divided into two phases. The first –see Figure 4– is a tactical road
march (column movement formation and traveling movement technique) until
both UGVs reach the checkpoint at the tree line. After synchronizing, phase two,
reconnaissance (staggered column movement formation and traveling overwatch
movement technique), starts. The task finishes when the UGVs reach their final
destination. A section may change its tactical behavior in response to critical
events, such as environmental changes and loosing the line of sight between lead
and follower. After coping with these situations, the task is continued where it
was interrupted.

Figure 5 portrays the top level of the Parts/whole Statechart representing
this task. The components of the Environment state generate random and crit-
ical events, which are detected by the UGVs and result in change of behavior.
At every cycle, Random Event Generator and Random Exception Generator
randomly generate an anticipated event (e.g., finding a tree line), a critical, or
unplanned, event (e.g., loss of the line of sight), or no event at all.

Terrain Classification captures changes in three aspects of the terrain: cul-
tural features, elevation, and vegetation.

The Section state represents a parts/whole decomposition. The two parts
are Lead UGV (leader role in a UGV section) and Follow UGV (the follower
role), and Section Whole is the whole. Any event detected by either UGV
is communicated with the other by virtue of the whole. Figure 6 zooms in
on Lead UGV and Section Whole. (Follow UGV is somewhat analogous to
Lead UGV .) Speed L is an XOR state that qualitatively records the speed of the
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Section Whole
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Fig. 6. Lead and Section1 Whole

lead UGV with substates such as Slow L. The substates in Tactical Behavior
are XOR states. Movement Formation represents four possible formations,
Movement T echnique represents four possible techniques, and Task Type has
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Fig. 7. Lead UGV and Section1 Whole Tasks

Table 1. Key for labeling of transitions in figure 7

Number Transition Label Relates to

Task L

1 after(1,Go)/Coord. . . .L Go W Start marching

2 L Line Found/Coord. . . .L Line W Lead finds line

3 W Region L/ Follower finds destination

4 L Region Found/Coord. . . .L Region W Lead finds destination

Task W

1 L Go W/Follow.W Go F Start marching

2 L Line W/Follow.W Line F Lead finds line

3 F Region W/Lead.W Region F Follower finds destination

4 L Region W/Follow.W Region F Lead finds destination

substates for three types of task (Marching, Reconn, and Engaging). Plan L
(in Lead UGV ) and Coordination Control (in Section Whole) have parallel
structure (along with has Plan F in Follow UGV ) since we represent only
events that impact coordination. A more detailed model would show consid-
erably more structure for the UGV parts to indicate behavior that need not be
coordinated. Task L represents the main path of play for the lead, and Task W
is the corresponding synchronization skeleton. Adaptation to four kinds of crit-
ical events is indicated: loss of line of sight and detection of a turn in the path,
a narrow path, and a blocked path. The transitions are numbered in Plan L
and Coordination Control so that transitions with the same number interact.
History pseudostates in Task L and Task W ensure that, when the response to
a critical event is finished, the main path of play is taken up where it left off
when the event occurred.

Figure 7 zooms in on substates Task L and Task W , which capture the antic-
ipated phases of the task, marching and reconnaissance. The transitions, labeled
with numbers, are explained in Table 1. By convention, the names of coordination
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events and actions are of the form X Name Y , where X is L, F , or W depending
on whether the action is performed by the lead, follower, or whole, respectively;
Y has the same possible values and indicates the part for which the action serves
as a triggering event. Each action is prefixed with the name (followed by a dot)
of the component (e.g., Section Whole) where it serves as a triggering event if
that component is not the current component. Space restrictions prohibit further
detail on this model, which contains over 200 states.

4 Constructing Parts/Whole Statecharts

We here outline a few heuristic techniques for constructing a Parts/whole Stat-
echart from an arbitrary Statechart and building a Parts/whole Statechart hol-
archy. Rigorous procedures would probably rely on a process algebraic-semantics
for Statecharts, such as that presented in [15]. In fact, some of the terminology
we introduce here has a process-algebraic inspiration.

4.1 Introducing a Whole

To begin with, consider the case where there are two coordinating parts. We first
identify cases where the action on the transition in one part (called the actor)
is the triggering event on the transition in the other part (called the target).
We call such action-event pairs complementary pairs, and we call the triggering
of the transition in the target by the performance of the action in the actor
a handshake. There is a transition in the whole for every allowable handshake.
This requires one to rename either the action (in the actor) or the event (in the
target); we assume that the event is renamed. Then the corresponding transition
in the whole has the actor’s action as its event and the target’s event as its action.
Since the same complementary pair may occur in several ways, the construction
need not be unique. Handshakes may cascade, with an action in one component
triggering a transition hence an action in another component, which may trigger
an action in a third component, and so on. Ignoring non-coordination events and
actions, one generally tries to reflect as much of the XOR hierarchical structure of
the coordinated parts as possible. A state referenced in conditions in other parts
should be duplicated in the whole. References to the original state in conditions
are replaced with references to its image in the whole. This requires much of the
structure of the part with the referenced state to be duplicated in the whole. If
one part is itself an AND state without a coordinating whole, it is replaced by its
substates. Cases where there are more than two coordinating parts are handled
much like cases with only two. Cascades of handshakes may involve more than
two parts, but this presents no difficulty.

Now, a given action in one part may have complimentary events in several
other parts. This allows two kinds of coordination, parallel and serial. For parallel
coordination, the events in the targets are all renamed with the same name,
viz., the complementary action in the whole. This allows multiple concurrent
handshakes. For serial coordination, the targets are ordered, and the event in
the first target becomes the compliment of the action in the whole transition that
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handshakes with the action in the actor. We introduce a subsequent transition
in the whole that handshakes (via its event) with the transition in the first
target and (via its action) with the second target. Further transitions in the
whole and renaming of the events in question in the remaining targets support
a cascade of handshakes. When parts are coordinated serially, we often must
allow several orders in the cascade to be equivalent, so we need a path through
the whole for each order. For parallel coordination, we would generally want a
distinguished part that can perform actions whose complements are events in
the shared interfaces of the other parts. For sequential coordination, we must
decide on an order in which handshakes are cascaded, which requires ranking the
parts. We can think of the distinguished part in the case of parallel coordination
or the highest ranked part in serial coordination as the leader.

4.2 Forming a Parts/Whole Hierarchy

We can obtain a parts/whole hierarchy of arbitrary height by using the tech-
niques outlined above for forming a whole except that, once we move up from
the lowest hierarchy level, wholes are introduced to coordinate other wholes. A
whole may coordinate a mixture of parts and wholes, and, in general, there is
no need to partition the hierarchy into levels.

Now, coordination between groups might be such that the action patterns
involved in the coordination are common knowledge among the members of
both groups. For larger or more structured groups, however, it is not reasonable
to expect each member to be as knowledgeable as this would require. For an
alternative view, consider distributed knowledge [11]. Group G has distributed
knowledge that φ if the members of G can pool there knowledge and infer that
φ. Now, it is often the case that, for groups G and H to coordinate, it suffices
that group G has the distributed knowledge required for the coordination and
that group H likewise has this distributed knowledge. That is, there is common
knowledge in the group consisting of G and H but not necessarily in the group
consisting of the members of G and the members of H . A particularly simple
case is where the relevant distributed knowledge of group G is known by a single
member and likewise for the distributed knowledge of H. Then the common
knowledge needed for coordinating the groups is in fact the common knowledge
not only of these groups but also of these distinguished members, which we might
think of as representatives. A group may have a leader in the sense mentioned
above and a representative; it need not be the same member that fills both roles.
Many other kinds of structure are possible with parts/whole hierarchies.

5 Conclusion and Future Work

We have shown how to model the tactical behaviors of hierarchical units of mil-
itary UGVs as holarchies, that is, hierarchies of holons, where a holon is both
a whole and a part. Holarchies are represented with Parts/whole Statecharts,
which introduce a whole in an AND state so that the parts (given orthogonal
components) interact with the whole. The whole thus coordinates the parts,
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and we relate it to the technical notion of common knowledge, which is a nec-
essary condition for coordination. As an example, we presented a Parts/whole
Statechart, implemented in Matlab’s Stateflow tool, modeling the behavior of
a section of two UGVs performing a task. Finally, heuristic techniques were
sketched for introducing wholes into Statecharts and for building parts/whole
hierarchies that model holarchies.

Space restrictions preclude a discussion of how a holarchical Parts/whole Stat-
echart model may be implemented by instantiating parts in individual agents.
The major issue here arises from the fact that a whole does not correspond to
an individual in the system modeled. The main insight is that a whole is instan-
tiated in all the individuals that instantiate parts coordinated by the whole, but
each individual instantiates the whole from its own point of view: details not
affecting that part may be abstracted away.

Holarchic modeling with Parts/whole Statecharts is seen to be a powerful
modeling technique that is intuitive and that facilitates modular, hierarchical
analysis of complex systems. Our framework shares some important features
with general system theory. Koestler’s theory of holons is considered to be in
the general area of general system theory, and hierarchical structures are often
invoked by general system theorist as key to grasping the domain of systems,
namely, “organized complexity,”which is too complex for analysis and too orga-
nized for statistics [16]. Von Bertalanffy maintained that “General system the-
ory is a general science of ‘ wholeness’ [2].” Weinberg’s discussion of observers
in [16] culminates with the notion of a superobserver (relative to a group of
observers) whose observations are similar to the distributed knowledge of the
group.

In the future, we intend to adapt insights from general system theory to our
formalism. We also intend to develop graphical interfaces and environments for
our Stateflow models to facilitate broader experience with more involved hol-
archies. Finally, we shall seek formal support for our concepts both by applying
process-algebraic semantics to our Statecharts and by using the HiVy [17] tool
developed by the Jet Propulsion Laboratories for translating Stateflow State-
charts into the design language of the SPIN model checker.
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Abstract. The systemic theory associates open systems and complexity closely. 
This article presents a particular articulation between these two concepts using 
the Systemion Model. Two types of opening are defined, characterized and il-
lustrated using examples. 

1   Introduction 

Computer systems are more and more complex both at the level of their composition 
and of their behaviour. The complexity of these systems has become so extensive that 
the most experienced system administrators feel more and more difficulty in ensuring 
their good functioning. But how can a complex system be identified? According to 
our point of view, a complex system is composed of heterogeneous elements with not 
clearly defined components and fuzzy interactions, whose total functioning cannot be 
deducted from the functioning of its elements.  

It is important to note that the computer systems do not constitute the only field 
where complexity poses a major intellectual challenge: complexity is also present in 
biological, physical and socio-economic systems. For half a century this inevitable 
complexity has given rise to numerous studies and researches which has led to two 
very different approaches: (1) equational approach and (2) structural approach. 

The equational approach is articulated around an extreme simplification of the ba-
sic elements of the system, allowing the use of powerful mathematical formalisms the 
treatment of which has led to an interpretation of the total behaviour of the system 
[16], [1]. 

The structural approach refutes the reduction of the elements of the system in sim-
ple indiscernible items and postulates that it is possible to decompose the system into 
elements and interactions without denaturing their intrinsic complexity. Contrary to 
the equational approach, the structural approach does not suppress the internal archi-
tecture of the elements of the system. Multiagent systems, autonomic computing [10] 
and the various theories resulting from the systemic thought such as the hierarchical 
complex systems [15], the systemography [12] or systemions [14] belong to the struc-
tural approach. Besides, the structural method insists on the architectural characteris-
tics of the elements which compose the complex system. According to the relations 
which it maintains with its environment, the system will be called open system or 
closed system. We shall present two aspects completely different from the opening of 
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a system: the informational opening and the physical opening. It is this last type of 
opening which we shall illustrate in a more precise way by applying it to the concept 
of agent. We shall use it to introduce its internal architecture (two-layer architecture) 
and identify the properties which introduce complexity within the agent (qualities). 
Linking the physical opening to an architecture with two levels (one layer ensuring 
the stability of the entity, the other taking care of its internal transformations) seems 
to be an interesting way of research in the implementation of self-management within 
complex computer systems. 

This paper is structured as follows. Section 2 presents two definitions of the notion 
of open system, illustrating two different points of view on this concept. The first 
definition was proposed by Carl Hewitt in order to have a formal model of calculation 
adapted to the study of distributed systems. The second definition arises from General 
System Theory and gives itself a vaster field of applications - natural or artificial 
physical systems to the most complex social organizations. The interest of these two 
definitions is that each one of them introduces an aspect which is different from the 
concept of opening. The first is mainly based on the concept of informational open-
ing; the second integrates the exchanges of materials between the system and its envi-
ronment, i.e. what we will name the physical opening. The section will end with a 
very general description of a software agent model whose architecture allows the 
implementation of the physical opening. This model of agent results from one of the 
components of General System Theory: the systemic approach. The following two 
sections will introduce the supplementary abstract tools necessary for a precise pres-
entation of an open agent model called the Systemion Model. Finally, the last section 
will illustrate the realization of the physical opening in this model by using two ex-
amples.  

2   From Open Systems to Open Agents 

The expression open system was used in various disciplines, in old ones (physics, 
biology) as well as new ones (sciences of the systems, data processing). Each one of 
them has provided this concept of characteristics, for some of them, very general and 
largely applicable to many contexts, for others very specific to a particular field. 
Three uses of this expression can be mentioned (1) it is sometimes used to character-
ize an elementary entity taking part in the more general activity of an organization, (2) 
in certain contexts, the expression even applies to the organization itself and not to its 
components, (3) in other fields, the expression is applied at the same time to the com-
ponent and to the whole. The object of our work relates more to the architecture and 
the functionalities of the unit of execution than the characteristics of the organization 
to which it belongs. Consequently, after having specified what the concept of open 
system means, our matter will concentrate on the open agent concept. 

2.1   Open Systems  

Carl Hewitt defines and characterizes the open systems in the following way: "Open 
systems deal with large quantities of diverse information and exploit massive concur-
rency. They can be characterized by the following fundamental characteristics:   
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(1) Concurrency. Open systems are composed of numerous components such as 
workstations, databases, and networks. To handle the simultaneous influx of informa-
tion from many outside sources, theses components must process information concur-
rently 

(2) Asynchrony. There are two sources of asynchrony in open systems. First since 
the behavior of the environment is not necessarily predictable by the system itself, 
new information may enter the system at any time, requiring it to operate asynchro-
nously with the outside world. Second, the components are physically separated dis-
tances prohibiting them from acting synchronously. Any attempt to clock all the com-
ponents synchronously would result in an enormous performance degradation be-
cause the clocks would have to be slowed down by orders of magnitude in order to 
maintain synchronization  

(3) Decentralized control. In an open system, a centralized decision maker would 
become a serious bottleneck. Furthermore, because of communications asynchrony 
and unreliability, a controlling agent could never have complete, up-to-date informa-
tion on the state of the system. Therefore control must be distributed throughout the 
system so that local decisions can be made close to where they are needed  

(4) Inconsistent Information. Information from outside the system or even from 
different parts of the same system may turn out to be inconsistent. Therefore decisions 
must be made by the components of an open system by considering whatever evidence 
is currently available  

(5) Arm's-length relationships. The components of an open system are at en 
arm's- length relationship: the internal operation, organization, and state of one 
computational agent may be unknown and unavailable to another agent for reasons 
of privacy or outage of communications. Information should be passed by explicit 
communication between agents to conserve energy and maintain security. This en-
sures that each component can be kept simple since it only needs to keep track of its 
own state and its interfaces to other agents  

(6) Continuous operation. Open systems must be reliable. They must be designed 
so that failures of individual components can be accommodated by operating compo-
nents while the failed components are repaired or replaced"[6].  

A key concept of this definition is the information notion considered as input and 
output streams. This informational opening is an essential characteristic of Hewitt's 
open system definition. This point of view is in accordance with computers since their 
origin, i.e. systems of data processing. The internal architecture of these systems is 
not at all affected by this activity of production and consumption of data. 

In completely different fields - physics and biology -, the scientist Ludwig von 
Bertalanffy developed in the 40s an open system theory [2]. Integrated into a General 
System Theory [3] an open system is characterized by a continual exchange of mate-
rials and energy, at the same time between the interior and the outside of the system, 
but also between its internal components. This dynamics allows a living organism to 
grow, develop, reproduce and to survive in spite of external changing conditions, 
while causing regeneration, renewal, destruction and replacement of the entities 
which compose it. The exchange of constituents which cannot be reduced to informa-
tion provides the entity with a type of opening of a completely different nature. Ap-
plied to the software agent field, this opening of physical nature offers more important 
flexibility than the informational opening but leads to a structural modification of the 
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agent. This transformation must imperatively be controlled by equipping the agent 
with adapted internal mechanisms, under penalty of causing its stop. 

The following section introduces a model of software agent which suits the study 
of the concept of physical opening.  

2.2   Systemic Agent 

Thanks to its broad applicability, the systemic approach [12], [4] provides - in the 
software agent context - the abstract tools allowing the consideration of the two types 
of openings considered previously: the informational opening and the physical open-
ing. A systemic agent is a software agent (1) surrounded by an environment: that 
means that the agent is located in a universe where there are action and reciprocal 
reaction, (2) provided with a software architecture which changes in time, (3) in order 
to carry out a certain activity. 

This last point - the activity of the agent - must be clarified. Indeed, when it is con-
sidered within its most general framework, the activity of the agent has a double as-
pect: the functioning related to the task which was assigned to it and the functioning 
bound to the preservation of its physical integrity. Then, the agent has a double final-
ity: an external finality materialized in the form of a task to be carried out or of a 
service to be supplied and an internal finality which object is to maintain the internal 
integrity of the agent. The designer of systemic agent is then confronted with the 
following problem: how to manage conflicts that may occur between the two finali-
ties. In other words, the decoupling of the two finalities poses a problem of arbitration 
which must be resolved at the level of the internal architecture of the agent. The se-
lected solution is to provide the agent with a two-layered architecture, a level associ-
ated with the external finality and a level associated with the internal finality. In addi-
tion, when the expression of the two finalities leads to a conflict, it is the internal 
finality which is privileged. 

The principle of a dual architecture posed, we must now specify its content that is 
to define the nature of the elements which make it up:  the properties of the agent. 

3   Attributes and Qualities 

Many definitions and characterizations of the concept of agent were published in the 
specialized literature [8], [13]. Certain studies articulate their analyses around two 
principal axes: properties possessed by the agent and the application area considered 
[9]. Our previous works led us to keep only one of the two axes: properties. Two 
classes of properties are then distinguished: attributes and qualities [14]. 

3.1   Attributes 

An attribute materializes a property of an agent which can be reduced to a mechanism, 
a perfectly known or customisable software device. For instance, the mobility attribute 
can be provided with a single parameter: the next site to be reached. Two pieces of 
information can customize the replication attribute: the rate of replication and the site 
of replication. The determination of the number and the meaning of the parameters of 
an attribute is made during the conception of the attribute independently from the 
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agent which will contain it. The decoupling between the realization of the attribute 
and the various considered parameter settings led us to associate a mechanism and 
one or several use policies to every attribute. 

Two main attributes will be used within the open agent’s framework: mobility and 
transformation. The mobility attribute is present in many mobile agent based applica-
tions [11], and will be used in section 5.2 to illustrate an aspect of the physical open-
ing. The second attribute is specific to the model of agents which we develop: the 
Systemion Model. This model will be presented in the following section. Two addi-
tional attributes will be evoked but not explained in detail:  replication and percep-
tion. 

Mobility: mobility allows an agent to migrate to other sites. The notion of itinerary is 
often associated to mobility. An itinerary corresponds to an ordered list of hosts hav-
ing to be visited by the agent, possibly specifying the actions to be carried out in the 
case of an unreachable or hostile host. An itinerary is characterized by a site of depar-
ture, a succession of intermediate sites and a site of arrival; in many mobile agent 
applications the site of arrival is the same as the site of departure; it is then called 
circular itinerary. Sometimes, the notion of route is not adapted because it is prefer-
able in certain cases, to calculate at the last moment the next site to be visited (to 
reach for example the least loaded host). 

Modification: the modification attribute can be interpreted in various manners. We 
will distinguish two variations from this attribute: evolution and metamorphosis. Evo-
lution can be seen as a succession of gradual transformations, relatively slow and 
going in the same direction. This type of transformation is very studied in several 
fields of research such as adaptive systems and artificial life. In our work, we are 
interested more particularly in the abrupt transformation of a software agent. This 
type of transformation, that we call metamorphosis, is defined as a change of nature 
or structure of the agent, more or less radical. Contrary to evolution, metamorphosis is 
a fast and sudden change. 

3.2   Qualities 

Unlike the notion of attribute, a quality cannot be given a precise definition accepted 
by all the researchers. Autonomy and intelligence are two paradigmatic examples of 
what we understand by qualities. Qualities are difficult to measure as they are mani-
fold. Consequently, there are various complementary models for a quality: for in-
stance, there are several models of autonomy. Indeed, there is a great variety of points 
of view among the researchers who are interested in this property: autonomy can be 
considered either as a global property or as a partial property of the agent, as a social 
or not social characteristic of the agent [5], [7]. Qualities introduce complexity within 
the agent. 

To illustrate one of the aspects of the physical opening of an agent, we will use a 
model of autonomy which considers it as a partial and not social property of the agent 
in section 5. This model derives from the definition: autonomy is the condition of a 
person or a group that chooses its own laws. In our context, policies or behaviours 
take the place of laws. 

The next section synthesizes the various concepts presented previously, within a 
particular architecture of agent. 
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4   The Systemion Model 

The systemion model (contraction of systemic daemon) is a particular model of sys-
temic agent [cf section 2.2]. A systemion [14] is a software agent which integrates in 
its architecture, the concepts of internal finality and external finality, qualities, attrib-
utes and task. This architecture can be split up into two subsystems:  

(1) a functional subsystem which materializes the external finality, i.e. properties 
(qualities and attributes) related to the fulfilment of the task possibly assigned to the 
agent. This task can change during the systemion life-cycle and constitutes the most 
flexible part of the systemion. Application complexity (including cooperation, coordi-
nation and communication interactions) is embedded into the task abstraction. To be 
able to integrate the first task in its functional subsystem or to change current func-
tion, a systemion must incorporate into its behavioural subsystem, the metamorphosis 
attribute  

(2) a behavioural subsystem: it contains the properties (qualities and attributes) 
specific to the agent, that is the properties which are independent from the task which 
it will have to execute. This software layer implements the internal finality (Figure 1).  
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Fig. 1. Systemion Architecture 

4.1   Tasks 

The functional subsystem establishes the current competence of the systemion in 
the form of a task. It is convenient to consider a task as being constituted of one or 
several components, each one providing a distinct service or all the components 
fulfilling a single function. Using the modification attribute included in the behav-
ioural subsystem, the functional subsystem of a systemion can be modified by exe-
cuting predefined operations on one or several components which it contains. Four 
operations on a component are defined: (1) adding: the component is inserted into 
the functional part of the systemion and activated; we shall say that the component 
is active (2) removing: it is the reverse operation of the previous one; the compo-
nent is removed by the functional subsystem (3) freezing: the component remains 
present in the functional part of  systemion but is not executed until a new reactiva-
tion takes place; the code segment is frozen (4) Activation: the component is reacti-
vated (Figure 2). 
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Fig. 2. Task modification 

 
Being able to dynamically add a component to a systemion contributes to extend the 
rendered services (extensibility). Dynamically replacing a component by another 
allows to adapt it to the particular characteristics of a given host or to modify the 
service to be provided. Finally, temporary freezing of a component allows a mobile 
agent not to execute a component on one or several visited sites, without deeply modi-
fying the systemion structure. Indeed, addition and removing of components can be 
expensive operations in CPU time and bandwidth. 

4.2   Using the Systemion Model 

Using the Systemion Model, we will analyze two classes of very different agents: 
system daemons and worms. This analysis will enable us to illustrate the concept of 
physical opening in the following section. 

Daemons are present in all modern computer systems. They carry out background 
service functions such as the management of network connections and printing re-
quests. For that, they continuously await the requests coming from the client proc-
esses, then carry out the requested service. From a systemion point of view, daemons 
possess only a functional subsystem because the properties they implement are only 
dedicated to the execution of the task which was assigned to them: daemons are uni-
task agents. Deprived of internal finality, the behavioural subsystem of a daemon is 
empty (Figure 3.a). 

Without simplifying excessively, we shall say that the purpose of a worm is to rep-
licate itself locally or remotely using a communication network. According to the 
systemion architecture a worm is constituted by a behavioural subsystem which inte-
grates two attributes: a mechanism of perception (local perception and perception of 
remote hosts) and a mechanism of replication (local replication and remote replica-
tion), attributes which confer a certain mobility to it. Not executing any particular 
task, a worm doesn't integrate a functional subsystem, which is empty and fixed. In-
deed, its functional subsystem will not undergo any operational modification during 
its lifespan (Figure 3.b). 
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Fig. 3. (a)  Daemon (b)  Worm 

5   Physical Opening 

5.1   Open Functional Subsystem 

The agents first studied were all functionally determined (empty or unitask). The 
systemion model supplies the tools necessary to the design and the implementation of 
agents functionally not determined. An agent of this type is provided with a functional 
subsystem which can vary in time, following the various tasks which it has to carry 
out. So that this dynamic modification of function can take place, the agent incorpo-
rates into its behavioural subsystem a suitable mechanism: the modification attribute 
presented in section 3.1. Not to jeopardize the systemion’s existence the change of 
current task is triggered by the behavioural subsystem but the modifications are car-
ried out in the functional subsystem. Thus it constitutes the most flexible part of the 
systemion. 

Incorporating this internal transformation mechanism, the systemion can evolved 
in different ways. Let us illustrate this with an example. Figure 4 describes the follow-
ing scenario: at time t a mobile agent arrives on host A. This systemion is an empty 
functionally not determined agent. It means that its functional subsystem does not 
contain any task to execute when host A receives it. At time t+1 the agent includes in 
its functional subsystem task T1 lying in a task repository. During its execution task 
T1 “asks” the systemion to migrate to site B. After the migration the systemion con-
tinues the execution of T1 on B, then deletes T1 from its functional subsystem and 
adds task T2 to it. These different operations are carried out using the ones presented 
in section 4.1. The systemion model enables to build pluritask agents. 
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Fig. 4. Agent functionally not determined 
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A pluritask agent can be used in various situations: (1) an empty mobile systemion 
is used to discover a network or to test its environment, (2) a task code used at a given 
moment, may be no longer accurate in a while since the main characteristics of the 
local environment may change, so the agent deletes this unusable task code. 

5.2   Open Behavioural Subsystem  

The physical opening can be applied to the behavioural subsystem of the agent. As we 
have already explained about the functional subsystem, the aim of the physical open-
ing is adding or removing behaviours having an external origin. The fundamental 
difference from task changing is that the modification(s) concern the part of the agent 
that ensures its reliability, i.e. the subsystem maintaining the stability of the agent. 
The physical opening of the behavioural subsystem introduces a risk for the agent’s 
life. 

We shall now illustrate how this opening can be done using the concepts presented 
above. The behavioural subsystem includes the attributes and qualities which define 
the essence and personality of the agent which are independent from the tasks that 
may be given to it. The concept of attribute differentiates the mechanism from the 
modalities of its use; each modality is called use policy or more simply policy. A 
particular model of autonomy is the autonomy with regard to an attribute. This model 
can be described as follows: : an agent is autonomous with regard to an attribute if it 
can rationally choose or randomly elect one policy among several ones associated to 
this attribute and can change current policy during its life. 

Decision
M odule

B1

B 3

B2

Internal inputs

Behaviours

New
Policy

 
 

Fig. 5. An incoming new behaviour 

In other words, an agent is autonomous with regard to an attribute if the policy it 
executes is not always explicitly forced on it by the environment. This kind of auton-
omy requires a set of behaviours and a decision module used by the agent to select the 
current policy (Figure 5).  We do not intend to present the structure of the choice 
module in details. That is why it is represented by a black box. When a new external 
behaviour must be incorporated into the agent, it automatically results in modification 
within the choice module. It means that the choice module also has to be modified, 
even totally replaced (by using the physical opening). 

If we take mobility as an example of attribute, different migration policies are pos-
sible: (1) random navigation, (2) navigation directed according to a special criterion 
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(e.g. a machine load). A mobile agent will include in its behavioural subsystem a 
choice module adapted to the handling of these two policies. If a new behaviour has 
to be taken into account by the agent, e.g. circular navigation, the choice module will 
also have to be modified. It can have various more or less serious consequences since 
policies have different complexities. Indeed, a behaviour can be made of one action: 
directed navigation and random navigation are mono-action policies. On the contrary, 
circular navigation is made of several elementary moves. 

The physical opening of the behavioural subsystem is trickier than the physical 
opening of the functional subsystem. Anyway, the systemion model makes it possible 
to study both of them. 

6   Conclusion 

Complex systems and open systems have common characteristics that theories result-
ing from the systemic thought try to specify. By applying to the software agent the 
concepts of physical and informational opening and of two-layered architecture with 
stable/unstable contents, the Systemion Model has illustrated the interest of the dual 
reasoning in the study of complex computer systems. 
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Abstract. This paper describes a hybrid dynamical system-based ap-
proach to formalizing and mechanizing analyses of dynamical agents,
i.e., situated, embodied actors that continuously respond to their envi-
ronment. As an example, the paper describes a class of formalized metrics
for reasoning about the relative difficulties of agent navigation in various
environments —not just whether one scenario is more difficult than an-
other, but how much more difficult a scenario might be— and presents
results of relative difficulty reasoning using a specific example metric.
This illustrates that qualitative or heuristic agent properties, which are
commonly unformalized and imprecise, may be formalized and rigorously
analyzed using this approach. The paper also discusses the potential im-
plementation of relative difficulty metrics in meta-intelligent agents.

1 Introduction

There are two interrelated, often challenging prerequisites for application-specific
reasoning about intelligent agents: identifying a framework for performing the
analysis; and, more fundamentally, representing and formalizing the ideas to
be analyzed. Consider, for instance, a mission planning task with a robot that
employs dynamic navigation (i.e., navigation that is determined by systems of
differential equations), in which planners must send the robot from an unpre-
dictable point in its initial region, the Western section of its environment, to a
known target position in the Northeast corner of its world. As part of mission
design, planners must select which of two world configurations the robot will
experience. In one scenario, there are three obstacles, aligned North-to-South,
halfway between the world’s Western and Eastern boundaries; the other scenario
contains those three obstacles plus a fourth, located in the Southeast quadrant
(see Figure 1). Mission planners might find it useful to have mechanical assis-
tance in computing the relative difficulties of the various scenarios—not just
which one is more difficult, but how much more difficult one is than another. It
may not be immediately apparent, however, how to formalize a notion of relative
difficulty, much less how to analyze relative difficulty measures for the scenarios.

This paper describes a hybrid dynamical system-based approach to formaliz-
ing and mechanizing such analyses of dynamical agents, i.e., situated, embodied
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Fig. 1. One world used for experiments. It contains four stationary obstacles, a target,
and an initial region, x, y ∈ [0 .. 1, 0 .. 4]. Does the obstacle at (3,1.5) add to navigation
difficulty?

actors, either material (mobile robots) or virtual (animated characters), that con-
tinuously, intelligently respond to their environment. Numerous architectures for
autonomous agents and intelligent systems are described as “hybrid,” a designa-
tion often referring to their combination of discrete (symbolic) and continuous
(analog) dynamics. The theory of hybrid dynamical systems (hybrid systems,
for short) applies to precisely these kinds of systems; past domains of appli-
cation for hybrid system models include descriptions of air-traffic management
systems [1], manufacturing systems [2], and robots [3] and animated actors [4,5].
Typically, properties of hybrid systems are specified as modal logic formulae; of
particular importance are safety properties, which specify that the system never
reaches a “bad” state (e.g., a collision state in which an actor’s position equals
an obstacle’s position). Verification of such properties is commonly performed by
reachability analysis [6]: System executions are constrained to begin from some
point in a pre-specified initial region, and a search procedure computes all states
reachable from that initial region by that system. If no “bad” state is reachable,
the desired safety property necessarily holds throughout any run of the system.
There are severe restrictions on decidability of reachability of hybrid systems
[7]. Correspondingly, there are several methods for approximating hybrid sys-
tems and thus making analysis feasible, including methods based on flow pipes
[8,9,10] or ellipsoidal approximations [11].

The utility of reachability-based analysis can extend even beyond proper-
ties with strict, conventionally accepted specifications (e.g., collision avoidance).
By introducing elements of heuristic judgment into reachability analysis, some
qualitative or heuristic properties of intelligent agents may be formalized and
standardized in a framework that supports efficient mechanical assistance in
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verification. As a concrete example, this paper presents a rigorous, reachability-
based approach to quantifying relative difficulties of some navigation scenarios.

Given the geography of a model —including the initial region and the lo-
cations of the actors, the obstacles, and the target— and a dynamical system
(i.e., differential equations) describing how that model will evolve over time, the
relative difficulty analysis procedure does the following:

1. Creates an abstraction of that dynamical model by decomposing the domain
space of the dynamical system into simplices;

2. Computes a piecewise linear approximation of the model, i.e., for each sim-
plex, constructs a linear approximation of the dynamics over that simplex;

3. Treating each simplex as a state, performs state reachability analysis on the
approximated, abstracted model, estimating the likelihood that the agent
will reach its target before colliding with an obstacle;

4. Utilizes the results of reachability analysis to quantify the relative difficulty
of that modeled world.

This paper further describes the procedure for relative difficulty analysis of dy-
namic navigation in fixed environments. In addition, the paper presents demon-
strations involving a specific example metric, and it discusses the potential for
relative difficulty metrics in metacognitive agents capable of reasoning about
their own navigation intelligence.

2 Methodology

2.1 A Reactive Model for Navigating Actors

This section introduces the dynamical navigation system employed in the il-
lustrative examples of section 3.2, a scalable, adaptive approach to modeling
multiple autonomous agents in dynamic environments of multiple obstacles and
targets [12]. At the core of the mathematics underlying navigation are non-linear
attractor and repeller functions that represent the targets and obstacles (respec-
tively). Another non-linear system combines their weighted contributions in cal-
culating an actor’s angular velocity, dynamically adapting to real-time changes
in the environment. Together, these non-linear systems form the navigation func-
tions for the actors, generating natural-appearing motion while avoiding colli-
sions and other undesirable behaviors. The agent heading angle φ is computed
from a non-linear dynamical system of the form

φ̇ = f(φ, env) = |wtar |ftar + |wobs|fobs + n, (1)

where ftar and fobs are the attractor and repeller functions for the system, and
wtar and wobs are their respective weights on the agent. (n is a noise term, which
helps avoid local minima in the system.)

The weights themselves are determined by computing the fixed points of the
non-linear system{

ẇtar = α1wtar(1 − w2
tar) − γ12wtarw

2
obs + n

ẇobs = α2wobs(1 − w2
obs) − γ21wobsw

2
tar + n

, (2)
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where the α and γ parameters are designed to reflect stability conditions of the
system. Other parameters are also concealed in the terms presented above. For
instance, a repeller function fobs depends on parameters that determine how
much influence obstacles will have on an actor.

This is only an overview of one significant part of the navigation system; there
is considerably more detail, including applications to three-dimensional environ-
ments [12]. This overview gives a feel for the mathematics, however, suggesting
the complexity of reasoning about it.

2.2 Simplicial Decomposition

This method of relative difficulty reasoning relies on linear approximations to
navigation functions. For the examples in this paper, that entails approximating
the functions for φ̇ given in section 2.1, as well as functions for ẋ and ẏ that
derive from φ. For other navigation methods, similar ideas would apply.

To arrive at linear approximations of such functions over a rectangular,
bounded, n-dimensional domain space, that domain is divided into n-simplices,
where an n-simplex (or just simplex, when n is understood) is the region of
n-space defined by the convex hull of n + 1 affinely independent points. For ef-
ficiency of detecting adjacent simplices, the decomposition should be such that
each simplex is adjacent to at most one other simplex across each facet (i.e., face
of dimension n − 1).

The n+1 vertices of each simplex are used to generate a linear approximation
to an original navigation function. That is, the navigation function over R

n is
evaluated at the n+1 vertices, and each evaluation leads to a linear equation in
n+1 variables. Together, the n+1 evaluations yield a system of n+1 equations
in n+1 variables, and the unique solution of this system provides the coefficients
for the linear approximation over that simplex. This can be straightforwardly
accomplished, although the optimal structure for this application remains an
open question.

2.3 Reachability Computation of Approximated Dynamics

In broad terms, the approach to reasoning about navigation is based on reachabil-
ity analysis [6]. Reachability analysis is commonly employed to verify properties
of some classes of dynamical or hybrid dynamical systems. In such a verification,
the system model is decomposed into discrete states, and each state is identified
as either satisfying or falsifying particular properties of the system (e.g., whether
the values of variables are within a certain prescribed range). To verify that a
model satisfies a given property, an automated tool such as [8,13] computes (of-
ten with conservative over-estimation) whether the system could evolve into a
state that falsifies the property. If no such falsifying state is reachable, then the
system must always satisfy the property.

A similar state reachability approach is employed in the method presented
here; undecidability restrictions that apply to reasoning about complex dynamics
are avoided by instead reasoning about approximations to the original navigation
system, i.e., the piecewise linear system induced by the simplicial decomposition
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of section 2.2. For purposes of reachability, each simplex is considered to be a
state. Then, a state is reached if the system evolves into that state, as controlled
by the navigation functions.

As an example of reachability over n-space, let A stand for the (n+1)×(n+1)
coefficient matrix of the linear dynamical system in a state Si. To determine
if the system could evolve from Si to an adjacent state Sj across the unique
shared facet Fi,j , A is evaluated at each vertex of Fi,j , and an n-vector of the
dynamics at that vertex is computed, with each element of the vector being the
time-derivative of the corresponding system variable. For example, in a three-
dimensional case, where the system is defined by the evolution of the values of
φ, x, and y, a computed 3-vector would be 〈φ̇, ẋ, ẏ〉.

Using these computations of the induced vector field of A, it is determined
at each vertex of a facet if the field is directed outward or inward with respect
to the simplex by taking the dot product of the dynamics with an outward
normal vector of the facet being considered. That is, for a facet Fi,j with vertices
{x1, . . . , xn}, let onvFi,j be an outward normal vector for Fi,j ; note that it is an
outward normal at every xk. To simplify notation, also let Vi,j,k stand for the
n-vector of system dynamics at vertex xk of facet Fi,j . To compute whether the
dynamics are directed outward at a vertex xk, simply consider the sign of the
dot product Vi,j,k ·onvFi,j . If that quantity is positive, the dynamics are directed
outward; similarly, if that quantity is negative, the dynamics are directed inward
at that vertex.

If the dynamics are directed inward at every vertex of the facet, then be-
cause the dynamics are linear, there can be no point on the facet at which the
dynamics are directed outward, and thus there is no point at which the sys-
tem could evolve outward through that facet. For facets on which a crossing
is possible —i.e., the dynamics are directed outward for at least one vertex—
the relative difficulty analysis assigns a likelihood that the system would evolve
across that facet, based on the number of vertices at which dynamics are directed
outward and the magnitude of outward-directed force. These two factors are the
bases for selecting which state transitions to consider in the reachability analy-
sis: Likely transitions are included in the computation while unlikely transitions
are pruned from consideration, enabling efficient and effective relative difficulty
measures.

3 An Approach to Quantifying Relative Difficulty

For the purposes of relative difficulty analysis, below, a state is considered to
contain an actor (or obstacle, or target) when some relevant, user-specified por-
tion of its x-y projection is contained within the x-y projection of the state;
for the examples in section 3.2, for instance, containment means that the center
point of an entity is within a state. Then, if the system is in a state containing
both an actor and an obstacle, a collision is considered to have occurred between
that actor and that obstacle. Similarly, if the system is in a state containing an
actor and its target, that actor has reached its target.
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Throughout this section, fixed environments of non-moving obstacles and tar-
gets are assumed, although as mentioned briefly in section 4, the underlying
theory also applies to dynamic worlds.

3.1 A Framework for Metrics of Relative Difficulty

Given an agent and its dynamical navigation system (e.g., the one in section 2.1),
and given an initial region of the world that bounds the system’s initial state
(e.g., φ, x, y ∈ [−π .. π, 0 .. 1, 0 .. 4]), relative difficulty analysis is based on approx-
imated likelihoods that an agent will collide with an obstacle before reaching its
target. Intuitively, the difficulty of that world is directly related to those likeli-
hoods.

As essential components, relative difficulty analysis employs the state reach-
ability method of section 2, and notions of bad and good states. A bad state
represents a localized judgment that, for an actor in that state, collision is more
likely than reaching a target: A state S is bad if either state S contains an obsta-
cle or, when the system is in state S, it is more likely to evolve into a bad state
than a good state as its next (i.e., immediate successor) state. Analogously, a
good state represents a localized judgment that reaching a target is more likely
than collision, and it has a similar, inductive-feeling conceptualization. A neutral
state is one from which neither collision nor target achievement is more likely,
including potential cases where an actor would never collide nor reach its target.

A state reachability analysis assigns values to states, which are then used to
compute relative difficulty. The reachability analysis begins with all initial states,
states that are at least partially contained in the initial region. Proceeding from
them to all states that might be reachable by the system, states in the initial
region are assigned a value by a stack-based, depth-first traversal of the overall
state space. At the end of the procedure, all states in the initial region will be
assigned either good , bad , or neutral values.

Once all states in the initial region have been assigned values, relative difficulty
is computed as the difference:

reldiff = safeweight ∗ sb
sz

− liveweight ∗ sg
sz

. (3)

The variables refer to the following quantities / parameters:

– sz is the total number of states in the initial region.
– sb is the number of states assigned value bad .
– sg is the number of states assigned value good .
– safeweight is a user input parameter indicating how much emphasis to place

on the system not entering a bad state. (It is called safeweight in reference
to general safety properties of systems.)

– liveweight is a user input parameter indicating how much emphasis to place
on the system eventually entering a good state. (It is called liveweight in
reference to liveness properties of systems.)

If both weights are positive, a greater number indicates more bad states and
greater difficulty, whereas a lower number indicates more good states and lower
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Fig. 2. The five worlds used for experiments. Obstacle configurations vary from world
to world. The example initial region and target location in each world, as well as the
axes, are identical to those in the example world detailed in Figure 1.

difficulty. It is not an absolute difficulty measure, but it can enable more educated
judgments about navigation missions.

3.2 Applications and Demonstrations

This section presents and discusses experimental analyses of navigation missions
in simulated worlds. For these examples, the weights safeweight and liveweight
were 1, the actors’ size was 0.05, the actors’ forward velocity was 0.2, and the
domain space was divided into 213 sub-boxes.

The image in Figure 1 represents an example world configuration used to il-
lustrate the methodology for computing relative difficulty. All entities are drawn
as circles. The decision that x, y coordinate spaces would be x, y ∈ [0 .. 4, 0 .. 4]
made expressing obstacle locations convenient but was otherwise arbitrary, sim-
ply creating some bounded region to decompose into states.

For the actors’ dynamic navigation in these worlds, the method presented
in section 2.1 was intentionally tuned so that some actors would collide with
obstacles. It was possible to tune navigation so that collisions never occurred, but
such optimal performance would not yield interesting data from the perspective
of relative difficulty.

Experiments were performed on five different virtual world configurations (see
Figure 2), which differed in the positions of stationary obstacles. The target
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Initial (Sub-)Regions Worlds
w1 w2 w3 w4 w5

φ ∈ [−π .. π], x ∈ [0 .. 1], y ∈ [0 .. 4] -0.477 -0.387 -0.477 -0.649 -0.623

φ ∈ [−π .. π], x ∈ [0 .. 1], y ∈ [0 .. 2] -0.263 -0.098 -0.263 -0.357 -0.534

φ ∈ [−π .. π], x ∈ [0 .. 1], y ∈ [2 .. 4] -0.724 -0.724 -0.724 -0.995 -0.724

φ ∈ [−π .. π], x ∈ [0 .. 1], y ∈ [1 .. 3] -0.426 -0.426 -0.426 -0.874 -0.548

φ ∈ [−π .. π], x ∈ [0 .. 1], y ∈ [3 .. 4] -0.935 -0.935 -0.935 -0.994 -0.935

φ ∈ [−π
2 .. π

2 ], x ∈ [0 .. 0.5], y ∈ [3 .. 4] -0.984 -0.984 -0.984 -1 -0.984

Fig. 3. Relative difficulty results for six different initial regions in each of the five
different world configurations in Figure 2. In principle, values could range from -1 (least
difficult) to 1 (most difficult); negative values indicate greater likelihood of reaching
the target than colliding with an obstacle.

location was the same in all experiments. The outermost possible bounds on
actors’ initial regions were the same in all worlds, as well, but many experiments
examined sub-regions as initial regions, to explore the role of starting position
on navigation difficulty.

Using the metric given by (3), thirty relative difficulties were computed (see
Figure 3). Six different sub-regions of [0 .. 1, 0 .. 4] were chosen as possible initial
regions for the actors, and relative difficulty values were computed for each
possible initial region in each of the five world configurations.

A General Result. One common consideration is the role of the initial region
in relative navigation difficulty. Would difficulty vary if actors were restricted
to start only in some sub-portion of the initial region x, y ∈ [0 .. 1, 0 .. 4]? In
particular, it seems intuitive that actors starting in sub-regions with greater y
values (e.g., x, y ∈ [0 .. 1, 2 .. 4] or x, y ∈ [0 .. 1, 3 .. 4]) would have a clearer path
to the target and hence an easier navigation task.

Experimental results are consistent with this intuition. When considering the
full range y ∈ [0 .. 4] or the subrange y ∈ [0 .. 2], the relative difficulty results
are substantially greater than over y ∈ [2 .. 4] or y ∈ [3 .. 4]. Furthermore, when
considering only y ∈ [3 .. 4], every world except world w4 had relative difficulty
value -0.935, substantially easier still. World w4 lacked the obstacle at position
(2, 3) common to all other worlds, and its relative difficulty readings indicated
even easier navigation: -0.995 over y ∈ [2 .. 4], and -0.994 over y ∈ [3 .. 4], with 0
bad states indicated in both conditions. Relative difficulties for world w4 were
not a “perfectly un-difficult” -1 because some states were marked as neutral,
presumably due to actors going out-of-bounds. This also explains why the value
for y ∈ [2 .. 4] was very slightly lower (indicating less relative difficulty) than for
y ∈ [3 .. 4]: A lower percentage of the states may have been judged likely to drive
actors out of bound in the larger, less-cornered region.

Simulation data are also consistent with these results. Simulations of 1000
actors on worlds w1 and w4 suggest that y ∈ [0 .. 2] was more difficult than
y ∈ [0 .. 4] but less difficult than y ∈ [2 .. 4], which was in turn less difficult
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than y ∈ [3 .. 4]. Simulations on w4 also support the observations made above
regarding collision-free initial regions and the greater out-of-bounds likelihood
for the more-cornered initial region. Evaluation of results is discussed further in
section 3.3.

Experiment 1: Removing Back-Row Obstacles. When considering all pos-
sible actors starting in initial region x, y ∈ [0 .. 1, 0 .. 4] of worlds w1, w2, and w3,
it is immediately apparent that the three obstacles at x = 2 are a barrier to
collision-free target achievement. Given that permeable barrier, it is less imme-
diately apparent how much the obstacles at x = 3 impede target achievement.
To test this, the three worlds were compared, thus comparing cases with 0, 2,
and 1 back-row obstacles, respectively, as indicated by the pictures in Figure 2.
Any observed differences are directly due the absence of back-row obstacles.

On all initial regions tested, worlds w1 and w3 were identical. This is a strik-
ing, unexpected but not counter-intuitive result, answering a question from the
introduction of this paper: The obstacle at coordinates (3, 1.5) made no differ-
ence at all to navigation difficulty. This result is consistent with simulation data.

Results also indicate that the impact of the obstacle at (3, 2.5) was present
but not pervasive. On all initial regions contained within y ∈ [1 .. 4], the rela-
tive difficulty measures were identical across w1, w2, and w3: Neither back row
obstacle affected actors in those states. On initial regions containing y ∈ [0 .. 1],
however, world w2 was substantially more difficult. These results about the ob-
stacle at (3, 2.5) are intuitive, and they are consistent with simulation data of
navigation with approximated dynamics.

3.3 Experiments: Discussion and Evaluation

In interpreting experimental results over various initial regions, recall that ac-
tors are generally considered over the full range of possible heading angles. In
particular, this implies no restriction to only actors that are initially pointed
in the direction of their target. Simulation data show a substantial number of
actors that wind up out-of-bounds.

Because there is no accepted, objective criterion for relative difficulty, eval-
uation of the experimental results of section 3.2 is inevitably inexact. In this
paper, results are evaluated, however loosely, based on two criteria: informal in-
tuition about the meaning of relative difficulty in context, and comparison with
collision data in simulated trials. In particular, collision data were the results
of simulating 1000 actors randomly placed in the initial regions; the numbers of
actors that collided or reached targets varied by as much as 5-10% from trial to
trial. An experimental result is thus noted to be consistent with simulation data
if experimentally determined likelihoods of collision and target acquisition are
within 5-10% of simulation results.

4 Future Directions and Discussion

The framework for formalizing and quantifying relative navigation difficulty is
intended to be broadly applicable and extendable. Details can be altered to
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arrive at different relative difficulty metrics, tuned to particular applications. In
addition, this framework is generally independent of the particular dynamical
systems governing navigation. No matter how complex the underlying differential
equations, the simplicial decomposition generates a continuous, piecewise linear
hybrid dynamical system to which reachability analysis can be applied.

With this flexibility, the framework applies not just to different obstacle /
target scenarios but also to different navigation methods. Up to the precision of
the linear approximation performed to support reachability analysis, the frame-
work could quantify relative difficulty differences among navigation methods in
the same geography. It even allows for testing of the relative effects of altering
parameter settings within a particular navigation method.

Methodology refinements and extensions are also possible on several lev-
els. For instance, the details of the state-reachability search at the heart of
the metric could employ a more complex constraint than the straightforward
bad-likelihood > good-likelihood . In addition, the present method for computing
relative difficulty theoretically extends to spaces of high dimensionality, which
means it can be naturally extended to apply to dynamic worlds in which there
are moving obstacles or targets. Even in its current form, however, the framework
directly applies to some cases with incompletely specified or non-fixed environ-
ments, such as missions in which an actor pursues multiple targets in sequence,
or where the goal is a target region rather than at a specific point.

4.1 Implementing Meta-intelligence over Dynamic Intelligence

Two levels of analysis have been described in previous sections. On one level,
actors perceive the world around them and intelligently, dynamically adjust their
navigation behavior (e.g., “turn more sharply now”). On another level, relative
difficulty analysis reasons about the way that actors intelligently respond to
their worlds, deriving judgments of how difficult one navigation scenario is when
compared to others (e.g., “using the current metric, scenario A is 0.2 more
difficult than scenario B”). As part of its procedure, the relative difficulty analysis
employs approximations of the sub-propositional, reflex-level intelligence of the
actors as bases for propositional, meta-level judgments.

It seems conceptually straightforward to implement this framework of meta-
level reasoning in a dynamically intelligent agent, thus creating a meta-intelligent
agent. The concrete examples in this paper were in the context of proposition-
level reasoning being performed by an outside intelligence, but the relevant meta-
level analysis does not require any information, meta-logical complexity, or com-
putational power beyond that which an animated actor or mobile robot could
already reasonably possess. For such meta-intelligence to be feasible, the agent
would need access to only the relative difficulty functions (and data structures)
and their arguments. Access to the functions themselves is straightforward to
provide. The functions’ arguments are simply the velocity of the agent itself
and the positions and sizes of all entities that affect the agent’s perception and
navigation. For animated characters, such information is immediate; for mobile
robots, mapping and localization concerns are significant but no more burden-
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some in this context of meta-intelligence than in other applications. Therefore, in
dynamical agents, a first-level meta-intelligence that arises from reasoning about
sub-propositional intelligence (as exemplified by the relative difficulty reasoning)
is implementable without inherent conceptual or semantic difficulties. Interest-
ingly, this kind of meta-intelligent agent could reason about its reactive navi-
gation process using exactly the same analysis methods that human observers
do. Agents could use such meta-level information as part of improved heuristic
wayfinding, incorporating low-level navigation intelligence with relative difficulty
analysis, map management, and other higher-level path planning.

Furthermore, note that there is nothing exclusive to the example dynamical
intelligence or relative difficulty reasoning presented in this paper that is nec-
essary for such meta-intelligent unification. As long as the real-time intelligence
is expressed by differential equations and the meta-level intelligence is directly
expressed as reachability analysis, the implementation of meta-intelligence over
dynamical intelligence seems to remain conceptually and semantically straight-
forward. Indeed, there is no restriction of the object domain even to be about
navigation intelligence; the fundamental topics could be any dynamically chang-
ing aspects of embodied agents, such as intensities of biases, emotions, affinities
or disinclinations toward elements of the world—anything that could be mod-
eled over time by dynamical systems, given environmental inputs. Supplying
a reachability-based semantics for meta-level knowledge does not always seem
straightforward, but in some cases, it could be done for both state-oriented prop-
erties of variable values in a world (e.g., “Is it ever true that an agent prefers
cold to heat?”) and for more global properties of worlds overall (e.g., “Is the
development of cold-aversion more likely in world w1 or world w2?”).

5 Conclusion

It is not the goal of this paper to provide a single definition of relative diffi-
culty for all situations. Instead, the paper suggests that the formal yet intuitive
approach presented here could offer adaptable assistance in creating and deploy-
ing intelligent dynamical agents, useful in a variety of circumstances. Example
applications of relative difficulty analysis suggest that even simple metrics can
correspond well with intuition and provide formalized insights into differences
among mission scenarios. In addition, the paper discusses the possibility of im-
plementing this approach to achieve meta-intelligent relative difficulty analysis
over intelligent wayfinding; the underlying theory can be generalized to other
instances of both the dynamical intelligence and state reachability-based meta-
intelligence levels.
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Abstract. This paper introduces a novel framework for designing multi-
agent systems, called “Distributed Agent Evolution with Dynamic Adap-
tation to Local Unexpected Scenarios” (DAEDALUS). Traditional ap-
proaches to designing multi-agent systems are offline (in simulation),
and assume the presence of a global observer. In the online (real world),
there may be no global observer, performance feedback may be delayed or
perturbed by noise, agents may only interact with their local neighbors,
and only a subset of agents may experience any form of performance
feedback. Under these circumstances, it is much more difficult to design
multi-agent systems. DAEDALUS is designed to address these issues,
by mimicking more closely the actual dynamics of populations of agents
moving and interacting in a task environment. We use two case studies
to illustrate the feasibility of this approach.

1 Introduction

Engineering multi-agent systems is difficult due to numerous constraints, such
as noise, limited range of interaction with other agents, delayed feedback, and
the distributed autonomy of the agents. One potential solution is to automate
the design of multi-agent systems in simulation, using evolutionary algorithms
(EAs) [2,9]. In this paradigm, the EA evolves the behaviors of the agents (and
their local interactions), such that the global task behavior emerges. A global
observer monitors the collective, and provides a measure of performance to the
individual agents. Agent behaviors that lead to desirable global behavior are
hence rewarded, and the collective system is gradually evolved to provide optimal
global performance.

There are several difficulties with this approach. First, a global observer may
not exist. Second, some (but not all) agents may experience some form of reward
for achieving task behavior, while others do not. Third, this reward may be
delayed, or may be noisy. Fourth, the above paradigm works well in simulation
(offline), but is not feasible for real-world online applications where unexpected
events occur. Finally, the above paradigm may have difficulty evolving different
individual behaviors for different agents (heterogeneity vs homogeneity).

In this paper we propose a novel framework, called “Distributed Agent Evolu-
tion with Dynamic Adaptation to Local Unexpected Scenarios” (DAEDALUS),
for engineering multi-agent systems that can be used either offline or online. We
will explore how DAEDALUS can be used to achieve global aggregate behavior,
by examining two case studies.
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2 Distributed Agent Evolution with Dynamic Adaptation
to Local Unexpected Scenarios

With the DAEDALUS paradigm, we assume that agents (whether software or
hardware) move throughout some environment. As they move, they interact with
other agents. These agents may be of the same species or of some other species
[6]. Agents of different species have different roles in the environment. The goal
is to evolve agent behaviors and interactions between agents, in a distributed
fashion, such that the desired global behavior occurs.1

Let us further assume that each agent has some procedure to control its own
actions, in response to environmental conditions and interactions with other
agents. The precise implementation of these procedures is not relevant, thus
they may be programs, rule sets, finite state machines, real-valued vectors, force
laws, or any other procedural representation. Agents have a sense of self-worth,
or “fitness”. Agents that experience direct performance rewards have higher
fitness. Other agents may not experience any direct reward, but may in fact have
contributed to the agents that did receive direct reward. This “credit assignment”
problem can be addressed in numerous ways, including the “bucket brigade”
algorithm or the “profit sharing” algorithm [3]. Assuming that a set A of agents
has received some direct reward, both algorithms provide reward to the set B of
agents that have interacted (and helped) those in A. Further trickle-back rewards
are also given to those agents in set C that helped those in B, and so on. Agents
that receive no rewards lose fitness. If fitness is low enough, agents stop moving
or die.

Evolution occurs when individuals of the same species interact. Those agents
with high fitness give their procedures to agents with lower fitness. Evolutionary
recombination and mutation provide necessary perturbations to these proce-
dures, providing increasing performance and the ability to respond to environ-
mental changes. Different species may evolve different procedures, reflecting the
different niches they fill in the environment.

3 Transition of Offline Applications to DAEDALUS

Our prior applications of EAs to design multi-agent systems have used the offline
approach – a global observer assigns fitness to agents based on their collective
behavior. In the next section, we show how DAEDALUS could be applied to
two different applications, namely, obstacle avoidance and the self assembly of
machines, in an online environment. For both applications, recombination and
mutation operators provide the ability to respond to environmental changes
(which can include the addition and/or removal of agents).

3.1 Obstacle Avoidance

In prior work we have shown how our artificial physics framework can be used
to self-organize swarms of mobile robots into hexagonal lattices (networks) that
1 The work by [8] is conceptually similar and was developed independently.
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Fig. 1. Seven robots form a hexagon, and move towards a light source

move towards a goal (see Figure 1). We extended the framework to include mo-
tion towards a goal through an obstacle field. An offline EA evolved an agent-level
force law, such that robots maintained network cohesion, avoided the obstacles,
and reached the goal. The emergent behavior was that the collective moved as
a viscous fluid [4].

The Artificial Physics Framework: In our artificial physics (AP) framework
[7], virtual physics forces drive a swarm robotics system to a desired configuration
or state. The desired configuration is one that minimizes overall system potential
energy, and the system acts as a molecular dynamics (F = ma) simulation.

Each robot has position p and velocity v. We use a discrete-time approxima-
tion of the continuous behavior of the robots, with time step Δt. At each time
step, the position of each robot undergoes a perturbation Δp. The perturbation
depends on the current velocity, i.e., Δp = vΔt. The velocity of each robot at
each time step also changes by Δv. The change in velocity is controlled by the
force on the robot, i.e., Δv = FΔt/m, where m is the mass of that robot and
F is the force on that robot. F and v denote the magnitude of vectors F and v.
A frictional force is included, for self-stabilization.

From the start, we wished to have our framework map easily to physical hard-
ware, and our model reflects this design philosophy. Having a mass m associated
with each robot allows our simulated robots to have momentum. Robots need
not have the same mass. The frictional force allows us to model actual friction,
whether it is unavoidable or deliberate, in the real robotic system. With full
friction, the robots come to a complete stop between sensor readings and with
no friction the robots continue to move as they sense. The time step Δt reflects
the amount of time the robots need to perform their sensor readings. If Δt is
small, the robots get readings very often, whereas if the time step is large, read-
ings are obtained infrequently. We have also included a parameter Fmax, which
provides a necessary restriction on the acceleration a robot can achieve. Also, a
parameter Vmax restricts the maximum velocity of the robots (and can always
be scaled appropriately with Δt to ensure smooth path trajectories).

In this paper we are investigating the utility of a generalized Lennard-Jones
(LJ) force law (which models forces between molecules and atoms).

F = 24ε

[
2dR12

r13 − cR5

r7

]
(1)
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F ≤ Fmax is the magnitude of the force between two robots i and j, and
r is the distance between the two robots. R is the desired separation between
robot i and all other neighboring robots. The variable ε affects the strength of
the force, while c and d control the relative balance between the attractive and
repulsive components. In order to achieve optimal behavior, the values of ε, c,
d, and Fmax must be determined. Our motivation for using the LJ force law is
that (depending on the parameter settings) it can easily model crystalline solid
formations, liquids, and even gases.

Optimizing Parameters Using Genetic Algorithms (Offline Approach):
Given the generalized force law, such as LJ, it is necessary to optimize the pa-
rameters to achieve the best performance. We achieve this task using a genetic
algorithm (GA). Genetic algorithms are optimization algorithms inspired by nat-
ural evolution. We mutate and recombine a population of candidate solutions
(individuals) based on their performance (fitness) in our environment. The indi-
viduals that have higher fitness than the average fitness of the population will
reproduce and contribute their genetic makeup to future generations. One of
the major reasons for using this population-based stochastic algorithm is that it
quickly generates individuals that have robust performance. Every individual in
the population represents one instantiation of a force law.

Further discussion of the genetic algorithm needs clear definitions of the para-
meter sets used for the GA individuals. The evolving parameters of the LJ force
law are:

– ε : strength of the robot-robot interactions.
– c : non-negative attractive robot-robot parameter.
– d : non-negative repulsive robot-robot parameter.
– Fmax : maximum force of robot-robot interactions.

and similar 4-tuples for obstacle-robot and goal-robot interactions.
Offspring are generated using one-point crossover with a crossover rate of

60%. Mutation adds/subtracts an amount drawn from a N(0, δ) Gaussian dis-
tribution. Each parameter has a 1/L probability of being mutated, where L is
the number of parameters. Mutation ensures that parameter values stay within
accepted ranges. Since we are using an EA that minimizes, the performance of
an individual is measured as a weighted sum of penalties.

Fitness = W1 ∗ CollPen + W2 ∗ CohPen + W3 ∗ GoalNotReachedPen (2)

The weighted fitness function consists of three components, a penalty for
collisions, a penalty for lack of cohesion, and a penalty for robots not reaching
the goal. Since there is no safety zone around the obstacles [1], a penalty is added
to the score if the robots collide with obstacles. The cohesion penalty is derived
from the fact that in a good hexagonal lattice, interior robots should have six
local neighbors. A penalty occurs if a robot has more or less neighbors. If no
robot reaches the goal within the time limit, a further penalty occurs.
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Experimental Methodology of Offline Learning Module: Our 2D simu-
lation is 900 × 700, and contains a goal, obstacles and robots. Up to a maximum
of 100 robots and 100 static obstacles with one static goal are placed in the envi-
ronment. The goal is always placed at a random position in the right side of the
world, while the robots are initialized in the bottom left area. The obstacles are
randomly distributed throughout the environment, but are kept 50 units away
from the initial location of the robots, to give the robots the opportunity to first
get into formation. Each circular obstacle has radius R0 of 10, and the square
shaped goal is 20 × 20.

When 100 obstacles are placed in the environment, roughly 5% of the environ-
ment is covered by the obstacles (similar to [1]). The desired separation between
robots R is 16, and the maximum velocity Vmax is 20. Figure 2 shows 40 robots
navigating through randomly positioned obstacles. The larger circles are obsta-
cles and the square to the right is the goal. Robots can sense other robots within
the distance of 1.5R, and can sense the obstacles within the distance of R0+1
(minimum sensing distance). The goal can be sensed at any distance.

Fig. 2. 40 robots moving to the goal. The larger circle represent obstacles, while the
square in the upper right represents the goal.

An LJ force law was evolved using the offline learning module of our simulation
tool. The population size was 100 and the EA was run for 100 generations. We
trained over scenarios with 40 robots and 90 obstacles. Each individual (an
instance of the force law) was evaluated for 1500 time steps, and averaged over
50 random instantiations of the environment.

Constraints with Offline Approach: The offline approach produces success-
ful results [4], assuming that there is a global observer that assigns the fitness
to individuals, the robots face scenarios in their current environment similar to
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the environment in which they were trained, and there are no communication
delays or disruptions. In real world online applications, an offline approach can
be problematic due to unexpected environment changes. We need an approach
that allows the robots to rapidly adapt to the changing environment. We propose
DAEDALUS, a fully distributed online approach that allows robots to adapt to
the environment changes.

Online Approach with DAEDALUS: Each robot of the swarm is an indi-
vidual in a population that interacts with its neighbors. Each robot contains a
slightly mutated copy of the optimized force law rule set found with offline learn-
ing. This ensures that our robots are not completely homogeneous. We allowed
this slight heterogeneity because when the environment changes, some mutations
perform better than others. The robots that perform well in the environment
will have higher fitness than the robots that perform poorly. When low fitness
robots encounter high fitness robots, the low fitness robots ask for the high fit-
ness robot’s rules. Hence, better performing robots share their knowledge with
their poorer performing neighbors.

When we apply DAEDALUS to obstacle avoidance, we focus on two aspects
of our swarm: reducing obstacle-robot collisions and maintaining the cohesion
of the swarm. Robots are penalized if they collide with obstacles and/or if they
leave their neighbors behind. The second scenario arises when the robots are left
behind in cul-de-sacs. This causes the cohesion of the formation to be reduced.

Experimental Methodology of Online Adaptation: Each robot of the
swarm contains a slightly mutated copy of the optimized LJ force law rule set
found with offline learning and all robots have the same fitness at the start. There
are five goals to achieve in a long corridor, and between each randomly positioned
goal is a different obstacle course with 90 randomly positioned obstacles. The
online 2D world is 1650 × 950, which is larger than the offline world. In our
changed environment, each obstacle has a radius of 30 compared to the offline
obstacle radius of 10. So more than 16% of the online environment is covered
with the obstacles. Compared to the offline environment, the online environment
triples the obstacle coverage. We also increase the maximum velocity of the
robots to 30 units/sec, making the robots moves 1.5 times faster than in the
offline environment. The LJ force law learned in offline mode is not sufficient for
this more difficult environment, producing collisions with obstacles (due to the
higher velocity), and robots that never reach the goal (due to the high percentage
of obstacles).

Robots that are left behind (due to obstacle cul-de-sacs) do not proceed to
the next goal, but the robots that had collisions and made it to the goal are
allowed to proceed to the next goal. We assume that damaged robots can be
repaired once they reach a goal.

Results: To measure the performance of the DAEDALUS approach, an ex-
periment was carried out with 60 robots, 5 goals in the long corridor, and 90
obstacles in between each goal. The experiment was averaged over 50 runs of
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different robot, goal, and obstacle placements. Each robot is given equal initial
fitness and “seeded” with a mutated copy of the optimized LJ force law learned
in offline mode. If a robot collides with an obstacle, it’s fitness is reduced. When-
ever a robot encounters another robot with higher fitness, it takes the relevant
parameters pertaining to the obstacle-robot interaction of the better performing
robot.
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Fig. 3. The ratio of colliding robots versus the number of surviving robots, for 60
robots moving through 5 goals with 90 obstacles in between each goal

Figure 3 shows the ratio of the number of robots that collided with obstacles
versus the number of robots that survived to reach the goals. The graph indicates
that after only 2 goals, the percentage of robots that collide with obstacles has
dropped from about 36% to well under 5%. Inspection of the obstacle-robot
parameters indicates that the repulsive component increased through the online
process of mutation and the copying of superior force laws (this was confirmed
via inspection of the mutated force laws).

This first experiment did not attempt to alleviate the situation where robots
are left behind; in fact, only roughly 43% of the original 60 robots reach the final
goal (see Figure 4, lower line). This is caused by the large number of cul-de-sacs
produced by the large obstacle density. Our second experiment attempts to alle-
viate this problem by focusing on the robot-robot interactions. Our assumption
was that the LJ force law needs to provide stronger cohesion, so that robots
aren’t left behind.

If robots are stuck behind in cul-de-sacs (i.e. they make no progress towards
the goal) and they sense neighbors, they slightly mutate the robot-robot inter-
action parameters of their force laws. In a situation in which they do not sense
the presence of neighbors and do not progress towards the goal, they rapidly
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mutate their robot-goal interaction causing a “panic behavior”. These relatively
large perturbations of the force law allow the robots to escape their motionless
state.
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Figure 4 shows the results of this second experiment. In comparison with the
first experiment (with survival rates of 43%), the survival rates have increased to
68%. As a control experiment, we ran our offline approach on this more difficult
task. After five goals, the survival rate is about 78%. Recall that the offline
results are obtained by running an EA with a population size of 100 for 100
generations, with each individual averaged over 50 random instantiations of the
environment. As can be seen, the DAEDALUS approach provides results only
somewhat inferior to the offline approach, in real time, while the robots are in
the environment.

Although not shown in the graph, it is important to point out that the collision
rates were not affected in the second experiment. Hence, we believe that it is
quite feasible to combine both aspects in the future. Collision avoidance can be
improved via mutation of the obstacle-robot interaction, while survival can be
improved via mutation of the robot-robot interaction and robot-goal interaction.

3.2 Evolution of Self Assembling Agents

For our second application we examine the self-assembly of robotic machines.
These machines must determine their physical structures in order to consume
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some resource and output some product. A self-assembling machine may need
to compete for resources and rapidly adapt in a changing environment. In this
dynamic simulated environment, machines without an explicitly defined fitness
function compete for survival. Each machine is slightly different from the oth-
ers. Those machines that perform better send their “blue-prints” to those that
perform worse. The poorer performing machines rebuild themselves according
to the new blue-print. This study uses DAEDALUS to examine the issues in
adapting L-Systems [5] to represent the different stages of development of these
machines. We present our preliminary results of this on-going study.

In this simulation, a number of machines are placed within a virtual envi-
ronment, where they must compete for three distinct resources. Acquisition of
a sufficient quantity of the available resources determines survival. Two of these
resources will be referred to as light and heat, and the third resource is simply
space; machines are not allowed to overlap. Machines use the acquired resources
as energy for survival and growth.

L-Systems Approach and Experimental Methodology: A machine’s final
structure is determined by a stochastic context-free bracketed L-system. An L-
system is a system of string re-write rules similar to a Chomsky grammar [5]. The
L-system is defined as an ordered triplet G = <V, w, P> where V is the alphabet,
w is the axiom (or start symbol) and P is the set of production rules. As in any
grammar, the start symbol is transformed through derivation steps involving the
production rules, resulting in a new word at each step. In the stochastic L-system
one or more production rules may have the same start symbol. A probability is
attached to each start symbol and the probabilities for a set of production rules
with equal start symbols sum to 1. During a derivation step, when a symbol
with several rules is encountered a random value is generated to decide which
rule to use.

A graphical interpretation of the word is presented at each step. The graph-
ical representation is accomplished through turtle-graphics. Each letter in the
alphabet is mapped to a turtle operation. We show an example L-system with
the corresponding turtle interpretation of the alphabet used below.
V = {F, B, +, -, [, ] }
w = F
P = {F (50%)→ FB, F (50%)→ F[+FB]F}
derivation example:
step 0: F
step 1: FB (at random the first F-rule was chosen)
step 2: F[+FB]FB (at random the second F-rule was chosen)

Turtle interpretation for the alphabet:
F = forward
B = blueprint
+ = turn right
- = turn left
[ = push the turtle’s current state onto a stack
] = pop the top of the stack into the current turtle
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Initially, a set of machines is generated with minor random variations. At each
time step machines may collect resources. The world is divided into columns
representing the first resource, light. Any machine that is taller than all others
in a column collects the light from that column for that time step. The second
resource is distributed evenly by mass. Competition for space occurs naturally
since machines may not overlap at the base. At the end of each time step all
machines are allowed to perform a growth step (L-System derivation), or to
switch to an adult stage. The switch to adult stage occurs upon acquisition of
a threshold amount of resource. The change arrests the L-System derivations
and begins a propagation phase. Adult machines create copies of their genomes
(blueprints) and distribute them in the environment. A machine constructor is
assumed to exist. The constructor takes blueprints in pairs, recombines them,
and builds the resulting machine with the current state of its L-System equal to
its axiom.

Fig. 5. Progress of Machines Competing for Resources

A series of snapshots from an example run of the simulation is shown in Fig-
ure 5. In the first row we see a population of machines shortly after initialization.
In the second row the right hand side of the environment is entirely controlled by
a dense cluster of tall machines. The left hand side is relatively empty with only
one small cluster of machines controlling any resources. The final two rows show
the small population being overrun by the much taller machines as they react to
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Fig. 6. The reproduction threshold depends on the difficulty in acquiring the resource

the free resource area on the left. Throughout all frames we see the population
adjusting its average height and structure for maximal energy absorption.

As mentioned above, the switch to adult stage occurs when the amount of
resource acquired exceeds some threshold. We also used DAEDALUS to deter-
mine this threshold, as the environment changed. We assume that the machines
must expend energy to acquire the resource. In some environments acquiring
resources is inexpensive, while in others it is expensive.

Figure 6 illustrates the results. At first, the energy to operate per unit time
is 0.1 (the units are arbitrary). Via mutation of the reproduction threshold pa-
rameter, machines evolve such that they reproduce when the threshold is ap-
proximately 15. There are also a large number of machines (not shown in the
graph). After 500 time units the operation energy is 0.5 (it is harder to acquire
resources). Note that the threshold increases to roughly 27. There are fewer ma-
chines also. The operation energy decreases back to 0.1 and then increases to
0.9. In this case the threshold is very high, at approximately 39. There are also
very few machines. Finally, the operation energy decreases back to 0.1.

The results are intuitively pleasing. First, in “easy” areas there are lots of
machines that reproduce often. In “hard” areas there are fewer machines that
reproduce less often. Second, the results are reproducible in the sense that when
the operation energy is 0.1, roughly the same threshold is evolved.

4 Conclusion

Traditional approaches to designing multi-agent systems are offline, and assume
the presence of a global observer. However, this approach will not work in real-
time online systems. This paper presents a novel approach to solving this prob-
lem, called DAEDALUS, where we show how concepts from population genetics
can be used with swarms of agents to provide fast online adaptive learning in
changing environments. Two case studies are used in this paper to illustrate the
feasibility of this approach.

Future work will focus more on the issue of credit assignment. Current work
in classifier systems uses mechanisms such as “bucket-brigade” or “profit shar-
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ing” to allocate rewards to individual “agents” appropriately [3] . However, these
techniques rely on global blackboards and assume that all agents can potentially
act with all others, through a bidding process. We intend to modify these ap-
proaches so that they are fully distributed, and appropriate for online systems.
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Abstract. In this paper, we present our approach to flexibly modelling
user processes: lightweight run time agents. These agents can be thought
of as essentially being ‘session handlers with persistent memory, which
steer the execution of generic global services according to the users’ pro-
file and its current context and goals. We illustrate this paradigm in two
application scenarios, the Online Conference Service, and MaTRICS, a
remote configuration management environment.

1 Services and Agents in the jABC

The concepts of objects, components, features, and agents are successfully used
today in the Application Building Center (ABC) environment [15], a tool for
graphical, library-based application development. We need them in order to
marry the modelling of functionally complex communication systems at the ap-
plication level with an object-oriented, component based implementation (see
Fig.1). Characteristic of the ABC is the coarse-grained approach to modelling
and design, which guarantees the scalability to capture large complex systems.
The interplay of the different features and components is realized via a coordina-
tion-based approach, which is an easily understandable modelling paradigm of
system-wide (business-) processes, and thus adequate for the needs of industrial
application developers.

As explained in [11], we choose to model applications at coarse granularity in
combination with a ’simple’ component and coordination model, which support
easy component reuse. This design decision was central for the success of the
approach, measured in terms of a seamless integration of our technology into
the customers’ processes.

In this paper, we consider a scenario of increasingly complex, distributed,
and interdependent service provision, with the emphasis on our approach of
lightweight run time agents. The challenge in such a scenario is combining the
apparently inconsistent needs for

– flexibility, in terms of complete online reconfigurability of the features, of the
whole service, of the role definition, down to personalization issues, and
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– scalability, necessary when managing a number of such services in parallel on
the same ASP cluster, each with its own incarnation of the features, services,
and roles, and this with

– telecommunication-level quality of service, concerning primarily service avail-
ability and reliability.

In particular, service interruption, e.g. for reconfiguration and restart, causes a
severe damage to the service provider. Thus everything in a service and in its
environment must be re-definable at runtime.

Our approach addresses scenarios where the user-level flow of control is of
central importance and therefore adequately realized via coordination graphs.
Particularly well-suited for our approach are applications where the flow of con-
trol frequently needs adaptation or updating, as it is the case when addressing
user-specific workflows or situation-specific (business-) processes.

The jABC uses lightweight runtime agents (cf. Sec. 2) to individually model
user support. According to the rich collection of definitions of agents in [3], they
behave like agents in the sense of e.g. AIMA and Hayes-Roth. Other definitions,
e.g. by IBM, where ”An IBM Agent carries out some set of operations on behalf
of a user or another program, i.e., is a task-specific agent”, seem to require being
software in order to be an agent: these definitions apply to the coarse-grained
description of the behavior (as a Service Logic Graph) together with the software
that implement it and its basic components.

In our opinion, both points of view are justifiable. Also the authors’ own
definition of [3] is applicable in our case:

An autonomous agent is a system situated within and a part of an en-
vironment that senses that environment and acts on it, over time, in
pursuit of its own agenda and so as to effect what it senses in the future.

Technically, the agents developed within the ABC can be classified as

– residential, in the sense that the service logic resides on a single machine
(more precisely on a load-balanced cluster, which is however transparent to
the SLG and therefore to the agent), which are

– proactive, in the sense that the agent knows autonomously which features
are enabled at this moment for his user, which contents are available for
him, and which consequences has a user action wrt. the further navigation
potential within this session, and

– online adaptive, in the sense that they react instantly to changes in the
context (user preferences, configurations of role and rights, other actions by
other agents). E.g., a report checked in by the last reviewer may automati-
cally open a discussion forum for this paper available for the whole PC.

The concrete application scenarios considered in the paper are the Online
Conference Service ([7,9,8,6]), the conference management system that has been
used for the submissions to WRAC, and the MaTRICS ([2]), an agent-enabled
platform for the remote intelligent management of computer systems (e.g. server
farms).
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Fig. 1. The Layered Architecture of the ABC Applications

The ABC is used here for the definition and enforcement of complex be-
haviors in terms of features, [4,6]1 which are superposed on and coordinated
within the system under development. The challenge is precisely how to handle
this superposition and coordination in an understandable, well partitioned, and
manageable way.

In the following, we first introduce jABC’s lightweight runtime agents in
Sect. 2, before we present the Online Conference Service (OCS) in Sect. 3, ex-
plain our behavior-based agent construction in Sect. 4, and present our feature-
based system development in Sec. 5. Finally, we illustrate our approach using
the MaTRICS application in Sect.6, and present our conclusions in Sect. 7.

2 Lightweight Runtime Agents

We are convinced that agents are a convenient metaphor for understanding
the complex and intertwined behaviors arising in systems like the OCS and
MaTRICS. Indeed, from the point of view of an application designer, the jABC
is an Application Building Center, but for our business-oriented customers and
for end users the same ABC is considered an Agent Building Center. End users,
and business or product developers that take the stake of the end users, have
a strongly subjective viewpoint of the system’s functionality, of the sort ”What
does the system do for me?”, or more precisely ”What does the system do on
my behalf?”. This mindset is well captured by an interpretation of the behavior
in terms of an intelligent and proactive user’s representative that runs through
the system on behalf of the real human user.
1 Although we too learned to know and appreciate the concept and the use of features

in the context of Intelligent Networks [4,5,16], our notion of features is more gen-
eral in order to also capture a more general class of services like online, financial,
monitoring, reporting, and intelligence services.
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We call this representative a Lightweight Runtime Agent, and we implement it
as a projection on the global behavior of the system according to the capabilities,
roles, and situative contexts of the user.

In the ABC, we use coordination graphs [11] as a basis for the definition of
these projective agents. Together, they make services (expressed as interoperat-
ing collections of features) available at runtime to the single users. Coordination
graphs are called in the ABC Service Logic Graphs (SLGs) in analogy to the
terminology for Intelligent Network services. They provide an adequate abstrac-
tion mechanism to be used in conceptual modelling: they direct developers to
the identification and promotion of user-level interactions as first-class entities
of the application development, which is important for taming the complexity
of system construction and evolution.

3 A jABC Application: The Online Conference Service

The OCS (Online Conference Service) (see [7] for a description of the service and
of its method of development) pro-actively helps authors, Program Committee
chairs, Program Committee members, and reviewers to cooperate efficiently dur-
ing their collaborative handling of the composition of a conference program. It
is customizable and flexibly reconfigurable online at any time for each role, for
each conference, and for each user. The OCS has been successfully used for over
60 computer science conferences, and many of the ETAPS Conferences. This
year it served in addition to conferences also several ETAPS workshops, with 8
instances of the service running in parallel.

The services capabilities are grouped in features, which are assigned to specific
roles. In the OCS, a single user may cover many roles (e.g., PC Members may
submit papers and thus be simultaneously Authors), and can switch between
them at any time during a working session. A fine granular roles and rights
management system takes care of the adequate administration of the context,
role and user-specific permissions and restrictions. The different roles cooperate
during the lifetime of a PC’s operations and use the OCS capabilities, which
are provisioned at the feature level. Through the cooperation of its features, the
OCS provides a timely, transparent, and secure handling of the papers and of
the related submission, review, report and decision management tasks.

The SLG of the OCS has currently approximately 2200 nodes and 3200 edges.
The benefit of our hierarchical graphical modelling becomes apparent, when
considering the top-most global, application-level SLG (see Fig. 2, top right),
which is quite simple:

– it contains at the top level the logic of the backbone service, which is basically
a skeleton service providing generic internet login and session management
services, and

– it coordinates the calls to and the interferences between the single features.

In Fig.1, the central layers for understanding our use of agents are the services
and the application layer.
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Services Layer
The Services layer defines the palette of coarse-grained services offered to the
users, and implements them in terms of the available components. In the ABC
at the service level we explicitly speak of Features, like the Setup, Delegation,
and Articles management features, which are accessible in the OCS to (some of
the) end-users. Features are explicitly made externally available via the GUI.

Application Layer
The Application layer defines the coarse structure of the workflows of the various
potential users in their specific roles in terms of a global SLG that coordinates
the involved features. E.g., in Fig. 2 we see on the top right the overall SLG of
the OCS, and on the left the SLG for the Submit Article feature.

In particular, an SLG defines user/situation-specific agents via

– workflows that are enabled only at certain times (e.g. the submission of
reports makes sense only between certain deadlines), or

– for certain roles (e.g. the configuration of the whole OCS service for a con-
ference, is in the hands of the PC Chairs), or

– under certain circumstances (e.g. the update of a task list for a PC Member
follows a delegation act of a paper to this member, the discussion in an online
forum is enabled only during the discussion phase, only if the PC Chair has
opened this forum, and only if the PC Member is not banned via conflicts
from accessing this particular forum).

4 From Global Behavior to Personal Agents

The SLG corresponds to the Global Functional Plane in advanced telecommu-
nication services: it describes the universe of the possible behaviors in a very
abstract way.

At runtime, a lightweight personal agent is associated to each user and for
each session: the agent can be seen as in charge of navigating the Application
level Service Logic Graph for this user in the current context, i.e., taking appro-
priate care of the current user profile and of behavior’s limitations due to roles,
deadlines, conflicts, enabled or disabled features, history etc...

Typical agent implementations do not have a layer corresponding to the SLG:
they usually consist of a number of agents (programs) that provide function-
alities and/or impersonate roles. Their global coordination is traditionally only
implicitly defined, and de facto seen as a runtime matter. In order to ”see” a
certain global behavior, one has either to simulate the parallel behavior of the
cohort of agents, or to construct the corresponding model and analyze it, which
is unfortunately a classical source of state explosion problems.

In our opinion, this is a clear drawback: due to the application profile we are
treating, we need to be able to analyze the global behavior at a more abstract
level: the graphs of hundreds of users in parallel would quickly exceed memory
limit. In contrast to other component-based approaches, e.g., for object-oriented
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Fig. 2. A Hierarchical Macro: The Submit Article Feature

program development, the ABC focusses on the dynamic behavior: (complex)
functionalities are graphically stuck together to yield flow graph-like structures
(the SLGs) embodying the application behavior in terms of control, as shown in
Fig. 2 for a portion of the OCS. These SLGs constitute therefore directly our co-
ordination models, and they are at the same time coarse-grained formal models
of the business logic of the applications. As explained in [11], they are internally
modelled as labelled Kripke Transition Systems [12] whose nodes represent (ele-
mentary) SIBs and whose edges represent branching conditions, so that we can
directly model check the SLGs as they are.
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Additionally, SLGs can be automatically analyzed, for example via Model
Checking. However, this feature is not in the focus of this paper and interested
readers can refer to [11,10] in order to read about the formal-methods based
capabilities of the ABC.

The ABC contains an iterative model checker based on the techniques of [14]:
it is optimized for dealing with the large numbers of constraints which are char-
acteristic for our approach, in order to allow verification in real time. In fact,
libraries of constraints allow the model checker to individually check hundreds
of typically very small and application- and purpose-specific constraints over
the flow graph structure. This provides concise and comprehensible diagnostic
information in case of a constraint violation: in fact, the feedback is provided
directly on the SLG, i.e. at the application level rather than on the code.

Our lightweight runtime agents have the same effect from a user’s point of view
as traditional software agents, but enable a more efficient and powerful analysis
(e.g. of feature interactions, of safety and liveness properties, of deadlocks) on
this additional SLG-based modelling level.

The following properties, which address important security and confidentiality
precautions, exemplify, what can be automatically checked by our model checker:

– the service can be accessed only by registered users,
– users can freely register only for the role Author,
– the roles Reviewer, PC Member, PC Chair are sensitive, and conferred to

users by the administrator only,
– users in sensitive roles are granted well-defined access rights to paper infor-

mation,
– users in sensitive roles agree to treat all data they access within the service

as confidential.

These properties are instances of the classes of safety and consistency re-
quirements identified in [1] to be characteristic of Computer Supported Collab-
orative Work platforms. They are specific instantiations of Role-Based Access
Control (RBAC) models [13]. Being able to automatically verify such properties
via model checking is a clear advantage of the ABC, and it is essential in order
to guarantee the safety of the kind of applications we build.

5 Feature Based System Development and Lightweight
Runtime Agents

Since features are not independent but rather influence each other, one of the
central aims of service validation via model checking and testing is exactly the
discovery and control of the so called feature interactions. Since features are
realized in the ABC in terms of (possibly nested) macros, each with its own
SLG, also in this case we can directly work with this model.

In the ABC, features are enabled and published to the end-users on their
finer granularity, according to a complex, personalized role-right-context man-
agement. As an example, only users with a PC Chair role are able to submit
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articles in the name of another user. The design of the sub-structure of features
is driven exactly by the needs of distinguishing behaviors according to different
contexts. Sub-features in fact usually arise by refinement of features as a con-
sequence of the refinement of the configuration features and of the role-rights
management system. This way we enable a very precise fine-tuning of the access
to sensitive information and to protected actions.

Once an internet service is online, it is continuously navigated in parallel by
a cohort of agents that are ’proxies’ for the single users. They ”represent” the
user, i.e., execute its global service logic within the limits imposed to the user
they are associated with.

Accordingly, in the ABC we do not directly program the agents or their knowl-
edge base. Rather, the SLG of an application defines the space of potential be-
haviors that agents can assume, and each agent’s behavior is defined implicitly
as the currently valid projection onto this potential, filtered via

1. the roles-and-rights management system, which defines dynamic, reconfig-
urable projections on the behaviors defined in the SLG, and

2. the current global status of the application, including the data space, the
configuration, and certain event- and time-dependent permissions.

6 Application: Agent-Based Remote Configuration of
Systems in the MaTRICS

With MaTRICS, we describe an architecture for pervasive management of dis-
tributed systems. It allows remotely connected users (e.g., system administra-
tors) to modify the configuration of any service provided by a specific (ap-
plication) server, like email-, news- or web-servers. Novel to our approach is
that the system can manage configuration processes on heterogeneous software-
and hardware- platforms, which are performed from a variety of peripherals un-
matched in today’s practice. In this sense, we realize a sort of pervasive system
management, where devices like mobile phones, faxes, PDAs are enabled to be
used by system managers as remote system configuration and management tools.

A physical server system usually provides a number of different services, each
coming with an own configuration format that depends on the version numbers
of the services and the underlying operating systems, and which are stored in
different files distributed over the file system. Updating a service thus results in
adapting the old configuration to the new one, which requires the execution of
a set of activities, expressible by means of a configuration workflow.

6.1 The Architecture

In the MaTRICS, every configuration workflow for a service is defined by an
operational model that expresses its business logic, including alternatives, spe-
cial cases, and exception handling. This model, also expressed as Service Logic
Graph, is formally defined and automatically analyzable (e.g., via model check-
ing). Configuration workflows are executed in the ConfigManager, the centralized
core component of the MaTRICS.
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Fig. 3. The High-level Architecture of MaTRICS

As shown in Fig. 3, Users access the MaTRICS from their thin terminals via
protocol-specific agents called ConfigAgents.

The ConfigAgents serve as protocol adapters between the client-specific pro-
tocols and the ConfigManager. They realize the presentation of data for a user
client and transform the user requests into a uniform format for the ConfigMan-
ager. To support a variety of different communication systems, like Web, SMS,
EMail, FAX, etc., we need specialized ConfigAgents, which we also realize by
means of SLGs.

The servers to be configured, called ConfigClients, communicate with the
ConfigManager via standard protocols, like SSH or RSH. All the modifications
of a ConfigClient’s configuration are launched by the ConfigAgents on behalf of a
user requesting the execution of some configuration workflows on that client. The
workflow execution is carried out by the ConfigManager via a JobFlow-Engine.

The SLG modelling style is powerful and intuitive, and it is used to define
all the user-level configuration services: an example of it is the WebAgent in
Fig. 4, but all the workflow-oriented services within the MaTRICS core like the
ConfigClient synchronization workflow and the service for editing configfiles are
designed as SLGs.

Already this global intuitive visualization is an important advantage wrt. to
the number of scripts and manual commands of which the workflow implemen-
tation for server management typically consists: it is well known how difficult it
is getting familiar with a large number of complex system-level tasks!

6.2 The MaTRICS ConfigAgents

The ConfigAgents are lightweight agents that constitute the communication in-
terface for the user clients. They realize the presentation of data for a user client,
transform the user requests into a uniform format for the ConfigManager, and
act on behalf of that user to launch reconfiguration processes. To support a vari-
ety of remote lighweight communication systems, like Web-browser, SMS, EMail,
FAX, etc., the MaTRICS provides specialized ConfigAgents that are themselves
realized by means of SLGs, in an abstract yet intuitive modelling style.
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Fig. 4. The Service Logic Graph of the MaTRICS’ WebAgent

We consider now the example of the WebAgent, a specialized agent which
supports reconfigurations via a browser user interface. Its SLG, shown in Fig. 4,
is organized as follows: from the start node,

– the init service branch leads to the portion of the logic that initializes the
WebAgent’s RMI-interface. To this aim, it connects with the ConfigManager
and requests a unique agent identifier.

– The first time a user client connects to the WebAgent, the dflt branch is fol-
lowed and a user session is created in the ConfigManager (RMIInvokeMethod-
Create Session).

– As soon as the entry point of the navigation service of the ConfigManager
is entered, that navigation service takes control over the WebAgent and
constructs the navigation bar. The corresponding requests and responses
to the ConfigManager are encapsulated by the MaTRICS Manager Protocol
(MMP), which internally uses RMI for communication. At this point the user
is able to use the WebAgent to carry out one or several remote operations.

– For each operation, the SIB RMIInvokeMethod MMP encapsulates the user
request as MMP message and invokes a configuration service of the Con-
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figManager. The response must be transformed into a web page, which is
shown by the SIB ShowFile action. Any modification on this page by the
user client is read and encapsulated to MMP, then transmitted by the SIB
RMIInvokeMethod MMP. At this point, the loop is closed and the WebAgent
is ready to carry out another operation.

7 Conclusions

We have presented lightweight run time agents, our approach to flexibly mod-
elling user processes. In contrast to the classical understanding of agents, light-
weight run time agents have no code on their own, but are merely ‘session han-
dlers with persistent memory, which steer the execution of generic global services
according to the users’ profile and its current context and goals. The advantage
of this approach is that vital properties of the intended service can be statically
verified at the global process level on the corresponding SLG, which essentially
summarizes the behavior of all its individual lightweight run time agents. More-
over, abstracting from implementation details like distribution of execution, data
bases, and other platform-specific issues, lightweight run time agents provide an
intuitive user-level paradigm.

We are currently using our approach in a variety of industrial projects, in
order to evaluate our claims. These projects are very illuminating, and already
led to some modifications enhancing the practicality of our approach, like a new
kind of process-oriented documentation on the basis of the SLG, and various
tailored versions of concurrency.
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Abstract. In this paper, we describe an on-going project called Concept and 
Sensor Networks (CSN). The development of this project has been described 
and discussed in past PSMP workshops [1]. The purpose of the project is to 
develop a framework for entities that can process sensor information into 
concepts. One of the features of this proposed network is the ability for the 
entities to use language communication to exchange concepts. These entities 
can potentially represent concepts, knowledge and information using different 
kinds of semantics. To further this project, we will to implement the proposed 
framework using physical and virtual sensors. In this paper, we overview the 
key components of the project, primarily focusing on lexical acquisition and the 
corresponding algorithm. 

1   Introduction 

Concept networks represent knowledge and information. They consist of 
communicating nodes of different power, which monitor and control physical 
environments, collect environmental data, infer meaning, build lexicon, and 
communicate this information. The specific concepts within the network need to be 
communicated and updated based on information provided by agents and sensors. 
Some of our efforts in this area are summarized in [2]. Many of the aspects of these 
networks have been captured during the PSMP (Knowledge Presentation Sharing, 
Mining and Protection) workshops [1]. 

CSN project is important because it introduces new definitions about networks  and 
addresses the question of how to build a system that possesses the six main features 
introduced in section 2 (universal data communication, universal semantic 
communication, system tolerance, recursive action semantics, lexicon evolution, 
learning by sharing). To our knowledge there is no such theory available in the 
literature. 



270 J. Smid, M. Obitko, and A. Bencur 

Two main terms we are dealing with are concepts and sensors. There is no 
universally accepted definition of the concept. Concepts are usually defined 
respective to an application. We will work with any heuristic definition of the concept 
that reflects a compact description of the world in the sense expressed by Baum [16]. 
Concepts can be rules, programs, a set of regression coefficients, or a subset of object 
defined by specific attributes. 

Even a trivial domain such as a number representing a sensor measurement leads to 
a nontrivially complicated semantics space. That is why we would like to prove our 
ideas using the simplest domains. The working assumption is that complexity does 
not depend primarily on the complexity of the application domain.  

Sensors can be virtual or physical. An example of a physical sensor is a piece of 
wire. An example of a virtual sensor is a query counter. Our view of sensors and 
nodes is radically different from the centralized approach in which a few sensors and 
nodes are directly connected to a powerful computing unit. Sensor networks consist of 
small, low-cost sensors, typically with wireless connection and with limited 
capabilities and operating range. One of the virtues of these networks is their ability to 
accept new nodes. Another benefit is fault tolerance and the distributed processing of 
the data. These networks can be modeled using the standard multi-agent systems 
paradigm. The agent can be a simple unit carrying a sensor that reports the sensed 
value. It can also be a more powerful unit that is able to analyze data from multiple 
sensors. 

A critical issue for sensor networks is the communication between nodes. There 
are two aspect of communication: data transport and information semantics. The 
routing protocols in a dynamically changing topology are already available, for 
example in Intel-Berkeley motes [5], also standard sensor networks are summarized 
by Akyildiz [3]. On the semantic side, the current approaches require pre-
programmed and fixed way of exchanging information. We believe that in order to 
ensure truly autonomous and fault-tolerant systems, the agents must be able to acquire 
knowledge and skills from other agents and humans. 

The rest of this paper is organized as follows: First, we summarize the overall 
project goals, the project principles and summary. We discuss entities used in sensor 
networks and discuss the hardware layer. The core of the paper is the explanation of 
the lexicon acquisition and its advantages. Here we start with explaining our view of 
the role of the language and discuss its usage, particularly the correspondence 
between utterances and semantics, together with inference. Then we describe in detail 
our algorithmic layer of lexicon acquisition, including applications and 
implementations. We conclude with the overview of the future work. 

2   Overall Project Goals and Principles 

Our project consists of four layers - cognitive models, message transport models and 
implementations, hardware and software embedding, and applications. The long-term 
plan follows several important steps that have been discussed under the umbrella of 
the PSMP workshops [1]. 
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2.2   System Main Principles 

The main system principles are: 

1. Universal data communication 
A number of protocols can be used to transmit data. Some of these protocols are 
universal. We also use wireless connections in our networks. The most common 
protocol for basic data transmission is the serial protocol. This protocol is often 
inconvenient because it may be very based on an application and the designer of the 
application. The Hypertext Transfer Protocol (HTTP) of the Internet stack is more 
appropriate for our purposes because it satisfies the universality requirement. Most 
agents and human user will be able to process the data due to this universal feature. 

2. Universal semantic communication 
Even if distributed systems are built around different knowledge representations they 
should be able to incorporate new information from different agents and share it. The 
information communicated should have in general two components, the description 
(utterance), and the semantics. The interpretation of utterances is a notoriously hard 
problem for standard syntactically based linguistics. Language with emphasized 
semantic components seems to be closer to methods that humans use well.  

3. System tolerance 
A flexible system needs to be able to incorporate new members and remove existing 
members. We will refer to this feature as system tolerance. 

4. Recursive action semantics 
In general, most researchers use semantics to refer to the meaning of an utterance, We 
add to this definition by incorporating the ability to perform actions on a given item. 
An example is the merge of two actions. 

5. Lexicon and semantics 
The system is able to build and utilize the lexicon. The lexicon builder is based on an 
algorithm operating on pairs of descriptions (utterances) and semantics (rules, 
programs, objects, actions). 

6. Learning by Sharing and Dialog 
Learning can be accomplished in a number of different ways. Solving problems, 
mathematical and game puzzles, searching for new theorems and mathematical proofs 
was the traditional focus in artificial intelligence. Unfortunately, there are very few of 
us that can claim to have discovered a novel theorem within out lifetime. A more 
realistic avenue for learning is by sharing information. We advocate learning by 
primarily sharing as a predecessor of the highest intellectual abilities. 

2.3   Project Summary 

The project goals can be summarized as follows: 

1. Information sharing 
We want to develop a framework, based on the two universal principles (introduced 
above), that allows the system to accept without manual reprogramming information 
that is either solicited or given. 
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2. Semantics 
Every piece of information has syntactical and semantic component which can often 
have the similar structure. Fundamental operations over pairs of syntactical-semantic 
components allow using language for communication between entities. 

3. Applications 
The purpose of the whole system is to perform useful tasks, such as providing 
information sharing, information merge and object monitoring without repeated re-
programming. 

Current applications in process range from a simple temperature reading to a world 
of agents that are able to build temperature profiles and use them to recognize and 
inform about abnormal. 

3   Entities Used in Sensor Networks 

We distinguish between passive agents, which merely report data, stand-alone agents, 
which are able to process data on a lower layer, and language-based agents, which are 
able to communicate about information and exchange semantics. We define 

websensors = sensors + (micro)processor + http(tcp/ip) interface, 
webprocessors = http(tcp/ip)interface + processor 

Websensors and webprocessors

Knowledge acquisition Data acquisition

ws1

wp2 ws3

wp1

wp3

wp4

ws2

 

Fig. 1. Websensors and Webprocessors 

The purpose of the hardware layer is to form a network that communicates using 
universal protocols, such as TCP/IP and HTTP. There are several different types of 
processors and interfaces we have used for our experiments. One group consists of 
simple processors such as Basic Stamp2 and Javelin, both from Parallax [6] or the 
HC08 by Freescale. These processors communicate using mini-web servers such as 
Red-i and Siteplayer [7] that provide HTTP connections. The other group of 
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Fig. 2. Types of websensors 

processors consists of integrated sensors, micro-controllers and transmitters. One 
outstanding instance of this group is the mica mote by Intel Berkeley [5] and 
distributed by Crossbow. For the overall picture, see figure 2. 

3.1   Webmica 

We have modified mica motes and created an example of a websensor (see figure 3). 
The interface for standard mica2 is provided by a custom made board consisting of 
generic micro-controllers. For practical reasons a Freescale HC08 microcontroller 
was programmed and it is able to interface of-the-shelf webserver Site-Player 
distributed by NetMedia [7]. 

The mica wireless nodes redirect data to a designated mica2 node that serves as a 
base of the network. The base outputs serial data that are converted into a command 
for SitePlayer by additional HC08 processor. A webpage is created by a SitePlayer 
module. For example a command for writing byte 0x55 to the memory location 0x20 
reads:  

(0x80, 0x20, 0x50) 
(write-command, address-to-write-to, data-to-be-written). 

Freescale's MC68HC908KX8 8-bit microcontroller has been chosen for our 
application, but any other device with similar features could be used as well. One of 
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our reasons for this choice was the minimal number of external components necessary 
for running this controller. Typical quartz crystal does not have to be put on the board, 
because of internal oscillator, which can be easily trimmed for exact frequency to 
generate baud rate for the serial communication module (UART). 

 

Fig. 3. Webmica and mica2 nodes cluster 

The main task of this processor is to wait for a new packet to arrive from the 
wireless sensor network's node 0 (MICA2) and then to delete certain bytes carrying 
data based on the number and order of the bytes, such as Node ID, Packet number. 
Any sensor can be connected to MICA sensor board, which gives many possibilities 
of future expansions, including object monitoring with infrared sensors, ultrasound 
sensors, and smoke detectors. 

4   The Role of Language 

Semantics has the central role in our approach to CSN. Language has several 
functions from the semantics point of view. 

1. Language utterance can point to actions or to declarative statements 
2. Language provides convenient and critical shortcuts decreasing complexity 
3. Language is context depending and hierarchical 

String languages have dominated mathematics and computer science at least since 
the beginning of the 20th century. The formal definition of the Thue word game was 
presented by a Norwegian mathematician Alex Thue around 1914. The words in this 
game are equivalent if there is a finite sequence of substitutions, from a given 
dictionary, taking one word into other. This game was as an example of an unsolvable 
problem by a computer. E. Mark Gold showed in 1967 [10] that it in some cases is 
impossible to identify even a simple regular language. In our opinion these examples 
provide fascinating results about syntax but they do not address primary issues of 
communication and the role of language. These types of problems and syntax analysis 
have prevailed in computer science because of its usefulness for computer 
programming languages. Following Winograd and Flores [11], p.124, we can 
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paraphrase their statement as “Our critique and approach is not a condemnation of the 
technical work that has been done or even of the specific techniques (representations, 
deductive logic, frames, meta-description, etc.) that have been developed. It 
challenges the common understanding of how these techniques are related to the 
human use of language”. 

5   Semantics, Inference and Utterances 

Jackson [14] discusses “semantic information” carried by a sentence as simply the 
data structure that the program creates when it processes (“understands”) the 
sentence. The general problem of semantics is to discover and define the kinds of 
“semantics” data structure represents. 

In addition to the defining the semantic data structure we also need to address 
semantic inference and semantic retrieval. Using the analogy of natural creatures, the 
system can learn independently of language. Modules performing useful functions can 
be controlled by logic provided by some other modules. When a response of the 
system is ready, regardless of how it was obtained, it needs to be communicated using 
language. This leads to the problem of generating utterances from semantics. 

These procedures can be best outlined using the simplest database semantics and 
inference. One of the simplest models which incorporates logic is Datalog (a version 
of Prolog for databases). We use Datalog as a paradigm for implementation and as an 
illustration for traditional concept of semantics.  

Standard database semantics (e.g. Ullman [11]) can be represented by first-order 
predicate logic. There are three alternative ways to define “meaning” or semantics. 
Regardless of which definition is used, the inference procedure of the system leads to 
a generation of a new frame, object or semantics and generating a corresponding 
utterance. Even in the simple case of declarative semantic there is no guarantee that a 
unique answer is defined, or that there is a reasonable way to turn the declarative 
program into a sequence of steps that compute the answer (Ullman [11]). The 
alternative ways of defining semantics are  

1. Proof-theoretic interpretation of rules is the set of all the facts that can be 
proved in all possible ways. 

2. Model-theoretic interpretation of rules is a collection of predicates assigned 
the truth or falsehood to every possible instance of those predicates. Usually, 
an interpretation is represented by its set of true instances. 

3. Computational definition of meaning provides an execution algorithm to tell 
whether a potential fact (predicate with constants for its arguments) is true or 
false. 

Standard semantics, used by e.g. Poole [15] for modeling robots is a kind of 
database type of semantics described by Ullman. 

Recursive action semantics: we believe that the standard definition and declarative 
rules must be expanded by using procedure, programs and recursive operations, or 
functions that operate on themselves. This means that, for examp, an object is always 
bundled with other objects and functions that operate on them. Semantics becomes a 
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way and a domain how systems “thinks” and a special case of that are rule, standard 
logic and thinking using language or words. 

Let us consider knowledge as a pair (utterance, semantics) acquired by a node. 
Simple semantics is particularly associated with declarative facts. One type of 
simplest processing is to apply standard logic operation for declarative facts. Typical 
logic operations that could be arguably innate or provided by the system creator (and 
used by ordinary humans) are modus ponens and modus tollens. Let us emphasize 
that the system is designed to accept any pair of the type (utterance, semantics). This 
pair can represent a rule, a declarative fact, or essentially anything. A special case of 
semantic databases are pictures (in e.g. jpeg format) that are annotated. 

The retrieval step is based on both the current utterance and the semantics. The 
simplest task is analyzing an utterance which points to a unique semantic situation. 
This situation can be translated using a known lexicon. The next more general step 
calls for a semantic situation that is found based on a given utterance and a current or 
preferable semantics. 

6   Algorithmic Layer-Lexicon Acquisition 

Our approach emphasizes that knowledge representation and acquisition tasks should 
be based on flexible language communication. The central idea is that virtual agents 
communicate using evolving lexicon and language. In the traditional context-free 
setting, language acquisition and identification, is a difficult task that cannot be 
successfully accomplished by using only positive examples [10]. Traditional artificial 
intelligence approaches difficult problems as the responsibility of an individual agent. 
We redefine an agent’s task as the ability to accept knowledge and skills provided by 
other agents and humans without strong logical reasoning capabilities. We can 
observe that most humans learn the majority of their capabilities from other people. 
These learned concepts are sometimes slightly adapted by some people and applied 
for ever-changing environments and conditions. Only in very exceptional cases we 
are required to create a completely novel solution. Consequently we believe we 
should “start small” with agents allowing them to learn from other agents and develop 
skills to tackle completely novel situations. 

We have attempted to apply a more human-inspired method of knowledge 
acquisition to our network. One of the main features of our artificial system is that 
information and knowledge for agents is provided in the form of pairs (utterance-
semantic observation). Siskind [8] proposes that an utterance can be paired to its 
semantics. The semantic component of the pair can be expressed as a program or a 
semantic expression. The mapping between utterances and semantics needs to be 
discovered by the agents. In doing so, agents are able to learn to understand new 
utterances, and moreover are able to acquire the skills, since they can run newly 
acquired programs by themselves. This approach emphasizes distributed nature of 
agent systems. Our approach is consistent with speech acts and the semantic 
orientation in the sense that our framework supports any pair (utterance, semantics). 

We describe a simple algorithm that allows us to expand an agent’s lexicon. The 
methods Siskind used in [8] were based on the arc consistency algorithm [9], standard 
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backtracking can work as well however we use what we call the semantics matching 
algorithm. First, an agent is presented several utterances and their semantics 
(expressed in a symbolic or actual programming language): 

 
Utterance Symbolic Utterance Translation - Semantics 
foo bar LIST temperature 
baz bar LIST humidity 
quux bar LIST acceleration 
baz bleen quux plugh COPY humidity TO acceleration 
baz bleen cruft foo COPY humidity FROM temperature 

 
The arc consistency algorithm can be visualized as a graph. The nodes show 

variables V1 foo, V2 bar, … V7 cruft, and their possible values (e.g. only one value 
temperature for the variable V1 foo) that are filtered out using the domain consistency 
rule and the semantic matching. The links connect overlapping sets of possible values. 
The link numbers give the order in which they are deleted when applying the Arc 
Consistency [9] algorithm.  

V1 foo

temperature

V2 bar

list

V3 baz

humidity

V4 quux

acceleration

V5 bleen

copy

humidity 1
V6 plugh

copy 2
humidity 3

to

acceleration 4

V7 cruft

copy 5
humidity 6

from

temperature 7

1 2

3

45
6

7

 

Fig. 4. Result of the Arc Consistency algorithm 

This algorithm provides the following lexicon. 
 

Term Translation Term Translation 
bar LIST foo temperature 
baz humidity quux acceleration 
bleen COPY plugh TO 
cruft FROM   

 
The “translation” refers to elements in a programming language. Thus, whole 

utterances can then be translated into an executable program, which can be performed 
by agents as a response to the utterance. The algorithmic layer of this translation game 
involves incorporating several tasks which correspond to additional more algorithms. 
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These include effective information representation and search using such ideas as the 
small world paradigm, semantics incorporation and reasoning in the semantic layer.  

Semantics matching is much simpler and faster for the semantic mapping problem. 
Let us illustrate the semantic matching algorithm using an example of two utterances. 
Two utterances and corresponding semantic expressions are 

foo bar = list(temperature) 
baz bar = list(humidity) 

The “list” is the only item that shows twice and therefore the “bar” corresponds to 
the “list”. That implies that foo = temperature and baz = humidity and this case is 
solved. Similarly we can proceed for pairs involving more items. The (m, n) refers 
now to a case where one utterance consists of m items and the other of n. 

• Case (2, 2) (a, b)  (c, b) implies b is known 
• Case (3, 2) (a, b, c)  (b, d) implies b is known 
• Case (3, 3) (a, b, c)  (b, c) implies a is resolved, b, c domains of 

values are reduced 
• Case (4, 2) (a,b,c,d)  (b,c,f,e) implies b, c, d are reduced to 2 semantic 

expression values each 
• Case (4, 3) (a,b,c,d)  (a,b,c,e) implies a, b, c are reduced to 3 semantic 

values each 

By induction it can be shown that any (m, n) situation can be reduced to (m-1, n), (m, 
n-1) or better. 

8   Implementations 

We have implemented several hardware components and software components of the 
CSN system. The hardware components, such as webmica were already described 
earlier. In this section, we focus on the implementation of the software components. 

The web interface accepting pairs is implemented in PHP and can be accessed via web 
browser by a human or by any agent via HTTP. The interface allows us to view, enter 
and edit semantic pairs. The semantics of these pairs can be immediately evaluated. 

In our implementation, we use PHP and SQL, which can be both easily exchanged 
and executed by agents without any need for the compilation step or a special 
programming context. A script example corresponding to an utterance “tell 
temperature” is 

<?php  require_once("csn.php");  
       require_once("semantics.php"); 
       PrintValue("tempovsd");            ?> 

The csn.php provides the basic database connectivity. The semantics.php 
contains hard coded functions that express the basic semantics used in utterances. For 
example, the PrintValue function is defined (using csn.php) as 

function PrintValue($what) { 
  print getSingleValueViaSQL( 
          "SELECT $what FROM sensors LIMIT $max,1"); } 
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which means selection and printing the last measured value from the SQL table.  The 
function getSingleValueViaSQL() provides basic MySQL support function 
that allows to extract required information in this environment. The mapping from the 
utterance “tell temperature” to “PrintValue(‘tempovsd’)” is then obvious – tell maps 
to PrintValue, while temperature maps to ‘tempovsd’. This mapping is predicated on 
the selection of the correct semantic frame and we do not discuss it in this paper. 

It is important to notice that when agents are able to exchange and execute these 
scripts then they are able to perform these operations themselves. Thus, after learning 
the lexicon and correspondence to the programs, they acquired the other agent’s 
skills. 

The semantic mapping algorithm is implemented in Java. The component accepts 
pairs of utterances and semantics, and is able to find mappings between them. For 
each pair, both utterance and semantics is tokenized. The tokens are used in the 
mapping graph. The mapping graph is built incrementally as new pairs arrive. It 
represents the graph of possible mappings (i.e. where utterance and semantics occur 
in at least one pair) minus the graph of impossible mappings (i.e. where utterance and 
semantics do not occur in at least one pair). We do not permit uncertainties in 
mappings so far – the mapping can be only strict 1:1, without any noise in both 
utterances and semantics. Using the algorithm described above, when a mapping is 
exact (i.e. one to one), it is removed. This procedure is repeated for each mapping that 
becomes exact during the process of lexicon and semantics acquisition. In the end, an 
utterance can be mapped to one element of semantics (procedure/function or its 
parameter) or to nothing (when the utterance doesn’t have impact on semantics). This 
mapping is then used for translation from utterance to semantics or vice versa. 

9   Conclusion and Future Work 

We have presented both hardware and software components for the CSN project. 
These basic components support information and concept exchange and algorithms 
for lexicon acquisition. The current implementations are mainly in PHP, Java, and 
MySQL because of the simplicity of the implementation. We expect the 
communication component to be implemented using the transport layer protocol 
TCP/IP and HTTP, to provide extensible agent communication. 

With regard to immediate future work, there are many components of the project 
that need to be refined or implemented. The next practical application that we intend 
to implement is database merge and intelligent object monitoring. These applications 
consist of two or more webprocessors and associated websensors (figures 1 and 2). 
One processor archives data and knowledge from its sensors. There is a need to merge 
this knowledge with a similar archive of data and concepts from the other 
webprocessor. More generally, more webprocessors and websensors (small hardware 
boxes) can be distributed as independent groups. When these groups contact each 
other, they will have the capability to communicate using the acquired lexicon 
resulting in new profiles, reasoning rules and sets of programs.  

Second application deals with a task of building a model of temperature (or other 
quantity) in a spatial distribution. Some agents might know how to build these models 
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and can share this skill with other agents that are needed to building the complete 
temperature model.  

CSN project is important because it addresses the question of how to build a 
system that possesses the six main features introduced in section 2 (universal data 
communication, universal semantic communication, system tolerance, recursive 
action semantics, lexicon evolution, learning by sharing). To our knowledge this 
problem has not been address in the computer science literature so far. Implemented 
CSN will be useful for home monitoring by anyone (ease of use) and for professional 
monitoring because of the flexibility of the system. 
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Abstract. A low cost, simple, agent based, robotic sensor web to collect 
exploration data is a major and efficient asset to any exploration initiative.  The 
Hybrid Analog-Digital Robotic Sensor Web (HADRS) provides this asset.  
HADRS is a meta-system rather than a system because it is an operational 
concept.  This is the case, as HADRS can be used on any robotic system, of any 
physical configuration.  HADRS will also operate in any environment, 
terrestrial, planetary, and space...  HADRS will disperse a large number of 
inexpensive Mobil Agents or Mobile Units (M/U) over a wide area.  Their 
initial search patterns will be random.  The cost is low due to an inexpensive 
analog subsystem.  When the payload instruments detect a target of interest, an 
autonomous, simple onboard feedback loop between the instrument and the 
hybrid analog/digital steering system, will guide the robot to the target. 

1   Goals 

• Maximize the amount of exploration data collected. 
• Minimize data loss due to any robotic system’s malfunctions. 
• Minimize the risk of total, system failure. 
• Minimize the size, weight, and power requirements of each Mobile Unit (M/U). 
• Minimize any robotic, agent based system costs. 

2   HADRS Concept Overview 

A low cost, simple, agent based, robotic sensor web to collect exploration data is a 
major and efficient asset to any exploration initiative.  The Hybrid Analog-Digital 
Robotic Sensor Web (HADRS) provides this asset.  HADRS is an operational 
concept.  HADRS can be used on any robotic system, of any physical configuration.  
HADRS will also operate in any environment, terrestrial, planetary, cyberspace and 
space...HADRS will disperse a large number of inexpensive Mobil Agents or Mobile 
Units (M/U) over a wide area.  Their initial search patterns will be random.  The cost 
is low due to an inexpensive analog subsystem.  When the payload instruments detect 
a target of interest an autonomous feedback loop between the instrument and the 
hybrid analog/digital steering system, will guide the robot to the target.  Figure 1 is 
provided as a graphic overview of the concept, for the reader to refer to while reading 
this paper. 
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Fig. 1.  HADRS Concept Overview 

3   HADRS Concept Structure and Function 

HADRS acts as the ops concept or meta-system for any agent based system.  HADRS 
is applicable to any environment and a wide range of exploration tasks.  It is a low 
cost, high return, solution to a complex problem.  The technology for initial concept 
development and implementation is currently available.  The HADRS sensor web will 
have near constant contact with telecommunications and other satellites in orbit, 
planned by other endeavors of the exploration Initiative, and to the Mission Control 
Center.  

HADRS Consists of Four major components:  
• The HADRS Sensor Web (S/WB), 
• The HADRS Mobile Units (M/U). 
• The HADRS Stationary Base Stations. 
• The HADRS Mission Control Center. 

3.1   HADRS Sensor Web (S/WB) 

Each HADRS M/U broadcasts the data and location of where the data was collected, 
to the nearest members of the sensor web, in other words to other M/Us.  This occurs 
in the same way members of social insect colonies spread information, about the 
location of food, to other members of their colony.  The insects that found the food in 
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turn spread the information on to other insects and eventually the information gets 
back to the hive.  The same principle operates here.  The data is migrated through the 
sensor web like waves that ripple out from a rock dropped into a pond, until it 
eventually reaches one or more of the Stationary Base Stations.  This accomplishes 
two things.  One, each M/U uses low power and a small bandwidth to transmit 
information to the rest of the web.  Two, it ensures that if any single M/U suffers a 
fatal failure the mission will not suffer a major loss of data, even if that robot’s data 
did not get to a Stationary Base Station.  Other HADRS M/Us will know where the 
M/U was when it failed, allowing Investigators to make a decision about whether or 
not to re-acquire the data with other M/Us.  The reacquisition will take place after the 
cause of the first M/U’s failure is diagnosed and a comfort level has been attained that 
the subsequent M/Us will not suffer the same fate.  Diagnosis of an M/U’s failure will 
be easier than current remote failure diagnostic techniques, as there will be other 
M/Us to autonomously assist in the diagnosis, without depending solely on Mission 
Control’s interpretation of historical data.   

The HADRS sensor web will have near constant communication with 
telecommunications and other satellites in orbit, planned by other endeavors of the 
Exploration Initiative (EI), or directly to the Mission Control Center.  The Base 
Station uplinks data from HADRS to the Mission Control Center and downlinks 
commands from the Mission Control Center, to the Base Stations.  The Base Stations 
relay it to the whole sensor web The HADRS Base Stations have a large data storage 
capacity and a powerful communications system, compared to the HADRS M/Us.  
Since the M/Us have very limited storage capacity, it will be critical that the M/Us be 
able to move data to the Base Stations on a continuous basis. 

3.2   HADRS Mobile Unit (M/U) 

Like the rest of the HADRS meta-system, the HADRS M/Us are applicable to any 
physical configuration of mobile agent, in any environment, using any propulsion 
method and for any exploration tasks.  HADRS does not care what the propulsion 
method and appendages for the mobility platform are.  The type of mobile platform 
will be determined by the environment in which the M/U is to operate and the task(s) 
to be accomplished.  The size and weight of each HADRS M/U will be minimized by 
the maximum use of MEMS and Nanotechnology. 

Each HADRS Mobile Unit (M/U) will consist of the following components: 

• A Hybrid Analog/Digital mobility platform. 
• An Exploration oriented Sensor/Instrument package. 
• A limited data storage capacity. 
• A communications package. 
• A power supply. 

The main advantage to the HADRS M/U is that the use of analog circuits for most 
of the initial “What’s out there” searching task, are less expensive by several orders of 
magnitude than conventional digital robots, such as the MERS...  There is no 
intelligence needed for the analog side of the mobility platform as it is designed to 
conduct the initial search in a random pattern.  This part of the HADRS M/U is much 
like the analog robots built at Los Alamos National Laboratory (Hasslacher and 
Tilden 1995).  This cost reduction allows one to have many HADRS M/Us in the 
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HADRS Sensor Web for a fraction of the cost of existing agent based robotic systems.  
The M/Us will initially be disbursed evenly over a large area and then search 
randomly until they identify something of interest, this gives HADRS the ability to 
cover a large area, in a short period of time, allowing for and promoting serendipitous 
discoveries.  

The digital part of the HADRS M/U is used to steer the M/U in a particular 
direction once on-board instrument sensors have detected a target of interest.  This is 
done, autonomously, through a feedback loop from the activated sensor on the 
instrument package to the steering system.  One possible sensor is an airborne particle 
detector with sufficient on board analysis capability to allow the HADRS M/U to 
determine what the detected particles are, for example the “electronic nose” from 
Cyrano Sciences (Albert et. al., 2000).  Once particles of interest are detected, the 
M/U can be guided toward the source of the particles by simply signaling the 
analog/digital steering system to move the robot in that direction.  Once the M/U 
begins to move in a certain direction the analog system can be set to go to the source 
of the signaled input.  This is a behavior that analog chips can handle easily because 
you can give them a sense of inertia just by switching the rhythm of the analog chip’s 
signal firing pattern that controls the appendage movements so the chip no longer 
fires in an offset pattern.  The offset pattern is what gives the M/U its random motion.  
If the sensor then senses that the particle density is getting lower in the direction the 
robot is going, it signals the digital steering system again.  This time the M/U is told 
to let the analog system move back toward the target until the particle density 
increases again.  At that point, the M/U is, again, told to head in the direction of 
greatest particle density producing an autonomous feedback loop to steer the M/U.  
The result is that the system uses very little intelligence but gets to the target 
autonomously, and in an efficient manner.  An ant behaves in much the same manner 
when trying to stay on a food scent trail.  Ants exhibit similar search pattern when it 
loses the scent trail until it finds it again.  This simple feedback loop is the way living 

 

 

Fig. 2.  HADRS Mobile Unit (M/U) Steering System Feedback Loop 
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organisms perform these tasks, why they can move so efficiently, and with minimal 
involvement from higher cognitive centers.  Below is a simple overview graphic of 
the HADRS M/U mobility steering system feedback loop (Figure 2). 

3.3   The HADRS Stationary Base Stations 

The Base Stations can store large amounts of data and have powerful communications 
equipment.  The Base Station platforms are also mobile in order to move to optimal 
locations, in order to maintain contact with as many M/Us as possible, mission 
control, and other EI systems.  When the optimal position is attained, the base stations 
are static and no longer mobile.  The HADRS Base Stations have a large amount of 
storage capacity, compared to the HADRS M/Us.  Since the M /Us have very limited 
storage capacity, it will be critical that the HADRS system be able to move data to the 
Base Stations on a continuous basis.  The Stationary Base Stations will be equipped 
with a powerful communications system to uplink the data to mission control and 
downlink commands from the Mission Control Center, to the S/WB. 

4   Conclusions 

HADRS will be a major asset to the exploration initiative.  It will be very robust, by 
reducing any single point of failure.  It will be able to explore a large area in a short 
time, allowing for and promoting serendipitous discoveries.  Finally, HADRS is a low 
cost system for three reasons.  One, HADRS will be a system of systems, because it 
will use other EI systems to complete its mission.  Two, it uses smart operational 
strategies.  Three, HADRS minimizes the cost of each HADRS M/U through its 
innovative design. 
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Abstract. This paper presents an AI architecture that has been developed 
specifically for controlling complex multi-agents interaction in games. The 
model is based on previous research into Emotional Societies and presents a 
realistic and believable environment for games. In response to a perceived lack 
of depth and realism in the team relationship dynamics of modern gaming, we 
developed a human agent architecture, multi-agent system, and demonstrative 
game application. The agent architecture was based partially on research into 
social psychology, and utilized emotion and belief representations to drive 
action selection. Agent interaction and relationship development was produced 
on the basis of the Iterated Prisoner’s Dilemma (IPD), through which a team’s 
success came to be determined by its members’ choices to cooperate or 
compete with its leader. A produced game application illustrated the operation 
of the developed architecture within the context of a political street protest. A 
set of evaluation scenarios were devised to test the success of the project work 
within this game application, and ultimately found it to be successful in 
achieving a good level of realistic team-based reasoning and interaction. Beside 
the potential application of the model and architecture to a computer 
entertainment environment, the model is generic and can be used as well for 
“serious” application which involves distributed emerging behavior, scenarios 
based simulation, complex agent-based modeling including emotional, reactive 
and deliberative reasoning. 

1   Introduction 

A common witticism concerning teamwork is that there is no ‘I’ in team—successfully 
working as a team requires that its individual members put their own interests aside and 
commit to each other. While if the idea is most certainly cliché, portrayals of teamwork 
and leadership roles in computer gaming remains noticeably self-centered. While a 
number of recent games have featured team or squad-based gameplay, few have 
challenged players as leaders in a realistic and dynamic way. The emphasis remains on 
the player as the only member of the team that really matters, as well as the only one 
really capable of surmounting the challenges ahead. The primary element lacking from 
such games are both the interpersonal aspects of team work situations and the evolving 
nature of a team relationship, both among its members and with its leader.  

This project sought to take some initial steps towards modeling team relationships 
and leadership roles more realistically in gaming applications. An oft-referenced 
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presentation given by Clark Gibson and John O’Brien at the 2001 Game Developer’s 
Conference describes team AI as the, “next step in game AI,” and that it is, “needed to 
be competitive,” and, “increase realism,” [1]. While game developers within the 
industry may be content to build this team AI from scratch, a significant body of 
research is already available from the agent-based academic AI community. The 
project work sought to harness the results of such research for this purpose. Its goal 
was to devise an agent architecture and multiagent system to model the chaotic, 
evolving nature of teamwork dynamics through representations of emotions, beliefs, 
and relationships. Previous research efforts into human AI, rule-based system theory, 
and even the Iterated Prisoner’s Dilemma were all incorporated into its development. 
The successful operation of the produced system was illustrated in the context of a 
custom-made game application involving a team of protestors staging a political 
demonstration. The ultimate goal of the project work was not only to make initial 
steps into realizing better teamwork dynamics, but also to rectify the, “mutual lack of 
interest between serious game developers and academic AI researchers,” by 
highlighting the suitability of agent-based approaches to AI in gaming [2]. 

The main outcomes of the work are presented in the remaining of the paper. 

2   Literature Review 

Foundational research for the project was conducted within the broad topic areas of 
social psychology and human agent AI. In addition, current efforts to model team 
behavior within the games industry were reviewed and accounted for. Some of the 
major findings produced by the research are presented in this section.  

Social psychology was quickly identified as a primary resource for understanding 
teamwork and leadership dynamics. A huge body of literature exists concerning how 
to be an effective leader or manage a successful team, but it was deemed to be too 
high-level for this initial AI development. At the same time, more specialized modern 
research into team behavior was thought to be too specific and nuanced for successful 
use. The best alternative was found in some of the core theories of social 
psychology—the branch of human psychology dedicated to understanding how 
human beings behave in response to each other. Among the topics and theory selected 
as appropriate for use in the project were conformity, social facilitation and loafing, 
group norms and cohesiveness, group polarization, and the various factors that 
influence individual cooperation in group settings.  Some of the findings validated 
common conceptions of teamwork—larger groups elicit more powerful pressures to 
conform, more cohesive groups generally perform better, and individual behavior 
relative to a group is partly determined by personality, past experience, and situational 
factors. Other findings provided some interesting theoretical backing to the project 
work. For example, the presence of a single defector in a group decision-making 
process has been found to reduce the pressure of conformity on the other members by 
80 percent [3]. Another finding deemed to be interesting was that group cohesiveness, 
or the strength of a team relationship, can be a negative factor in group decision-
making as it can influence members to avoid disagreement and neglect their better 
judgment in order to maintain group compliance [3]. Research into social psychology 
also aided in the identification of social dilemmas such as the Prisoner’s Dilemma, 
which was later chosen for use in modeling the project’s team member interaction.  
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Perhaps the most important body of research surveyed for the project work was 
that of human AI—the efforts of a relatively small branch of the academic AI 
community to devise more and more realistic simulations of human behavior. The 
topic area was approached through the examination of three exemplary projects 
developed for applications in computer animation, gaming, and sociological research 
simulations. Each of the projects will be briefly reviewed here.  

For computer animation the selected project was a knowledge-based human crowd 
animation system developed by S.R. Musse and D. Thalmann in 1997 [4].  

The Oz Project was surveyed for an understanding of the state of human AI pursued 
for applications in computer gaming. The Oz Project’s principal ‘Tok’ agent architecture 
is pictured in Figure 1. Among the most notable details garnered from its study were its 
use of a planning system to select appropriate agent actions given both emotional and 
sensory stimulus, its greater inventory of emotions (including hope, fear, pride, and 
admiration), and its use of value constructs like standards and attitudes to give its agents 
individual personality and elicit continual influences on behavior [5].   

 

 

Fig. 1. The Oz Project’s ‘Tok’ Agent Architecture [5][12]  

The final and arguably most complex of the reviewed projects was that of the 
Ackoff Center for Advancement of Systems Approaches (ACASA) in developing an 
integrative agent architecture and multiagent system for purposes in both gaming and 
social research. The research group’s architecture expanded on the Oz Project’s dual 
subsystem model with the use of four subcomponents, designed to give their agents 
specialized physiological, emotive, cognitive, and motor/expressive reasoning in an 
interconnected framework. This particular arrangement influenced the project work in 
its own divided architecture and introduced the importance of stress and physiology 
on human AI. One particularly interesting aspect of the ACASA’s work involved the 
use of detailed ‘concern ontologies’ to specify the moral values of a given agent and 
guide its emotional deliberation—a mechanism the researchers intended to be 
complex enough to model existing literature such as, “the ten commandments or the 
Koran for a moral code,” or, “military doctrine for action guidance,” [6]. The ACASA 
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similarly demonstrated the operation of their architecture through the use of a street 
protest simulation environment.  

In addition to surveying academic AI resources for simulating human behavior the 
project reviewed the current state of the team AI within the games industry to provide 
context for its work. The two primary methods highlighting through this research 
were centralized and decentralized approaches. In the former, game AI developers 
manage team behavior through the use of a rigid command hierarchy in which orders 
flow downward from a group commander to their subordinates and environmental 
information flows upward [7]. Though strategically sufficient and arguably realistic in 
modeling teamwork situations in the military, this first method is poorly suited to 
more dynamic team representations due to its reliance on strict obedience and 
homogeneous agents. Decentralized approaches, the second primary method, involve 
an opposite arrangement in which, “interactions between squad members, rather than 
a single squad leader, determine the squad behavior. And from this interaction, squad 
maneuvers emerge,” [8]. Here the emphasis is on emergent team behavior which 
develops as individual agents share environmental information and select individual 
courses of action in response to those of their cooperative team members. The 
obvious problem with this second approach is that its lack of an explicit leader and the 
self-interested character of the team agents make concerted, strategic team behavior 
much more difficult to achieve. In response to these two approaches the project was 
able to identify and pursue a middle approach able to balance the structure of 
hierarchical organization with the versatility of individual member reasoning.  

3   Analysis and Design 

Having reviewed past efforts in developing human and team-based AI, the project 
moved on to its analysis and design stage. Three principal components required 
design: (1) the human agent architecture; (2) the multiagent system, and; (3) the 
demonstrative 3D game application.  

The project component requiring the most elaborate design was undoubtedly the 
human agent architecture. The primary challenge in its design was in integrating a 
variety of stimulus (including emotions, beliefs, and physical perception) with 
specialized team-based relationship representations and having the resulting system 
able to make appropriate behavioral decisions for its agent. The architecture itself 
came to be modeled after Abraham Maslow’s famous ‘Hierarchy of Needs’ (pictured 
in Figure 2) due to its own integration of emotion and relationship-based reasoning as 
well as to its ability to balance both reactive and deliberative intelligence. Agent 
reasoning was thus designed to take place using a tiered, hierarchical arrangement in 
which the agent would perform one particular type of reasoning at each level. The 
resulting emotions or observations from each reasoning level would then be collected 
by the agent and used in selecting the most appropriate action. A given reasoning 
operation begins at the bottom level (Physiology) and only advances to the upper 
levels if the assessment results in non-critical values/observations. Arranged in this 
way, the agent can quickly obviate more complex reasoning when its lower levels 
determine it is in immediate physical danger.  
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Fig. 2. Abraham Maslow's Hierarchy of Needs [9] 

In the following section we describe how this model is used as architecture for our 
team-oriented agent reasoning model.  

4   Agent Reasoning Model 

Figure 3 illustrates the design for the agent reasoning model. We can see in the left 
side the agents’ default, low-level reasoning; and in the right side the team-based 
agent reasoning model [10]. 

4.1   Team-Based Agent Reasoning  

The opportunity for more elaborate agent reasoning is introduced in the designed 
system once the team leader selects an action for their team to perform. Figure 3 
presents a conceptual illustration of this more complex reasoning process, which is 
the heart of the project work. Here a number of new visual elements are immediately 
evident. First, the agent reasoning hierarchy is seen as fully-fleshed out in three new 
levels: (1) a ‘Love/Belonging’ level; (2) an ‘Esteem’ level, and; (3) a ‘Self-
Actualisation’ level. At this point it should be evident that Abraham Maslow’s 
Hierarchy of Needs has had a particular influence on the agent’s reasoning design. 
Other noticeable visual elements are the set of emotion parameters positioned on the 
upper left hand side of the figure. These are the agent’s emotions, represented as 
numeric values normalized over the range of 0 to 1, and linked to a set of emotion 
functions. Finally, on the right hand side of the figure is a box signifying the design’s 
rule-based system (RBS), which handles its core Planning and action selection 
functionality.  

All of the components and processing pictured in the grey upper square of the 
figure should be understood as operating within this RBS, but it is conceptually 
represented as a separate entity to symbolize its role in making the final action 
selection for the inquiring agent.  
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Fig. 3. Overview of Team Based Agent Reasoning 

The operation of this more elaborate reasoning design will be demonstrated by 
walking through the seven-step sequence highlighted on Figure 3. These steps are 
explained as follows: 

(1) The agent looks to the FSM to provide it with an action to perform. The leader 
of the agent’s team has been identified as suggesting an action for the team to 
perform, and the agent is trying to determine whether it should cooperate or defect 
and perform its own individual actions. The same reasoning limitations imposed by 
certain states in the FSM apply, but should the agent be placed into the ‘D’ state and 
allowed access to higher level reasoning, the core team-based reasoning of the project 
can really begin. 

(2) The reasoning continues into the agent reasoning hierarchy, where it attempts 
to scale the various reasoning levels by satisfying their specialized reasoning 
assessments. The bottom two levels of ‘Physiology’ and ‘Safety’ must be surpassed; 
the project agents are designed to always remain conscious of their physical and 
environmental conditions in conducting their higher-level reasoning.  
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(2a) This supplemental step is included to indicate that if either of the two bottom 
levels of the reasoning hierarchy detect extraneous situations that require immediate 
response, they can supersede the upper levels and immediately return an action to the 
agent to perform.  

(3) With the agent’s physical state secure, reasoning can continue into the upper 
levels of the hierarchy, which are now managed within the system RBS. The upper 
levels of the agent reasoning hierarchy are more concerned with processing and 
updating emotions than recognizing particular environmental conditions. They 
generally look at previous actions and use recorded stimulus to update the numeric 
emotion values pictured on the left. The ‘Love/Belonging’ level is the most important 
in the hierarchy, as it is where the bulk of the agent’s team-based reasoning takes 
place. It generates two emotions; (1) a relationship strength value (‘Rel’ in Figure 3) 
indicating the status of an agent’s relationship with their team, and; (2) a happiness 
value (‘Hap’ in the figure) that is calibrated relative to the success of the team’s 
collective efforts. The fourth reasoning level, entitled the ‘Esteem’ level, concerns an 
agent’s self-confidence and generates feelings of pride (‘Prid’ in Figure 3). It should 
be noted at this time that the ‘Safety’ reasoning level generates a fear emotion 
parameter (provided that reasoning successfully surmounts the level) that can be 
utilized in higher level reasoning as representative of the danger of the current 
situation.  

(4) Here the normalized emotion values are augmented by a set of agent-specific 
emotion progression functions. Different agents utilize different functions to model 
different personality traits. For example, the project provides three functions for the 
fear emotions interpretation: (1) a ‘normal’ median function; (2) an enhanced 
‘coward’ function, and; (3) a reduced ‘hero’ function. These functions allow the basic 
normalized emotion parameters to be managed in the same manner by the reasoning 
hierarchy for every agent, while still providing a mechanism for emotional reasoning 
differentiation. At this step in the sequence the functions are applied and the resulting 
emotion values are loaded into the RBS in preparation for final action selection 
reasoning.  

(5) The ‘Self-Actualisation’ level serves mainly as a placeholder in the hierarchy 
for the final reasoning process. Its main contribution is to load the agent’s action 
preference into the RBS, which is another agent personality detail that will be 
incorporated into the action selection reasoning. Within the RBS at this step are: (1) 
the agent’s augmented emotional parameters; (2) the agent’s action preference, and; 
(3) the leader’s specified action, which is loaded for all of the team agents prior to 
their team-based reasoning operations. This stimulus is collectively assessed within 
the RBS at this step, with the final goal of either deciding to cooperate with the 
leader’s suggested action or choosing instead to perform an individual action. 

(6) The action selected by the RBS’ processing is returned to the agent via the 
FSM. However, en route the action selection is reviewed by the ‘Esteem’ and 
‘Love/Belonging’ reasoning levels so that they can better perform their emotional 
assessments for the next reasoning opportunity. The basic idea is that these levels 
 



 Harnessing Agent-Based Games Research for Analysis of Collective Agent 293 

look at the action and adjust their team relationship, happiness, and pride emotions 
depending on whether or not the agent ultimately decided to cooperate or whether the 
final action was consistent with their action preferences or not.  

(7) The agent receives their action instruction from the FSM and carries it out 
amongst the team agents. The reasoning sequence is complete.  

4.2   Finite States Machine 

The actual behavior of the human agents was designed to be managed through a low-
level finite state machine (FSM).  

 

Fig. 4. Agent FSM Design 

There are a number of reasons for this arrangement. First, the computational 
complexity of the higher-level reasoning processes was expected to be too 
significant to carry out for each execution cycle. The FSM provided a means 
through which a human agent could be placed into a state of action that could 
continue until its next high-level reasoning opportunity. Second, while the selection 
of actions by the human agents was intended to be governed through emotional 
construal, it was thought that this process could be better organized through state 
representations and transitions.  

The FSM for the project’s activist agents is pictured in Figure 4. 

5   Model Agent Interactions  

Agent interaction and relationship modeling is driven primarily through the use of the 
Iterated Prisoner’s Dilemma (IPD) [11].  
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For the project’s modeling of team work situations the IPD was chosen for use as 
an interesting and powerful means of managing agent interaction and team 
cooperation. Its adaptation for use in understanding team dynamics is fairly simple. 
Conditions that influence a team member’s decision to cooperate with their team 
include personal and cultural differences, situational factors, and team dynamics. 
Those same factors are echoed in the project’s adaptation of the IPD. The dilemma 
is posed to the individual team members when the player-controlled leader proposes 
an action for the team to carry out together. The individual agents must decide 
whether they should cooperate with the leader’s suggestion or defect and ignore 
their request, deciding instead to act in a manner of their own choosing. The final 
factor, team dynamics, is modeled through the use of norms—a concept for 
individual interaction commonly discussed in social psychology as well as in IPD-
based research [11][3]. 

 
*High pride assessments result in defection because high levels of self-esteem make the agent take the 

dominant individual action in either situation. Medium pride assessments result in cooperation because the 
agent is willing to give the team, or a conflicting action, a chance. The result of low pride assessments 
depends on which is lower, the agent’s happiness or its pride; in low pride situations the agent will try to 
make the choice that bolsters the lower of the two emotional values. 

Fig. 5. Simplified Team AI Diagram 

According to the project’s design, being a good leader boils down to selecting the 
appropriate action for the team to perform given their varied personalities and 
preferences. Such actions will limit defection in these agents because participating in 
them will positively impact their happiness as well as their pride assessment. Table 1 
and Figure 5 are provided to help illustrate the IPD-based team AI design. 
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Table 1. Leadership and Team AI Design 

Effect on Agent A Effect on Agent B 

Leader
Choice Happiness & 

Love/Belonging
Pride

Happiness & 
Love/Belonging

Pride

+ + 
Team majority participation 

+
Team majority participation 

A’s

Action*

-

Team minority participation 

+
Increase, personal 

beliefs validated 
- - 
Team minority 

participation

-
Decrease,

Personal

 beliefs 

betrayed

+
Team majority participation 

+ + 
Team majority participation 

B’s Action* 

--
Team minority participation 

-
Decrease,

personal beliefs 

betrayed

- - 
Team minority participation 

+
Increase, personal  

beliefs

validated

+
Team majority participation 

+
Team majority participation 

Other

Action

(careless)  

- - 
Team minority participation 

-
Decrease,  

personal beliefs 

betrayed
- - 

Team minority participation 

-
Decrease,

personal beliefs 

betrayed

 

6   Demonstrate! Game Application 

The design of the demonstrative 3D game application—seen as the key to illustrating 
the successful operation of the complex human agent architecture to interested 
parties—was developed alongside the artificial intelligence it was intended to support 
(a screenshot of the application developed as test-bed can be seen in Fig 6).  

Ironically entitled ‘Demonstrate!’ the game was intended from very early stages in the 
project’s development to involve a political street demonstration setting. The political 
demonstration setting was seen as providing the potential for a variety of agent personality 
types and motivations, a vast repertoire of different actions and emotional expression, and 
an interesting new context for developing teamwork situations and reasoning.  
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Leader selects action ‘Sign’ to gain confidence of ‘Classical’ class team member 

 
The police agents scatter the activist team, using aggressive physical force and causing the 

agents to respond with evasive actions. 

 
Leader repeatedly selects action ‘Vandalize’, which does not match any of the team agents’ 

classes and the destructive relationship effects become evident in the reluctance of the majority 
of the agents to cooperate 

Fig. 6. “Demonstrate!” Application screenshots 
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More detailed information about the design and implementation of the model, 
along with an extensive set of scenarios and evaluation can be found in [10], showing 
the relative success of the model and the agents interaction. 

7   Conclusions 

“The Development of a Cooperative Multiagent System to Facilitate Leadership 
Roles in Computer Entertainment” project [10] set out to investigate agent-based 
artificial intelligence techniques to simulate realistic team dynamics for use in 
computer gaming.  

The success of the developed AI and its expression within the demonstrative 3D 
game application are indicative of the many strengths of the work. The constructed 
reasoning design was successful in achieving a good level of team-based agent 
reasoning and behavior, as demonstrated in the sections on its evaluation [10]. 
Leadership and team dynamics remain a complex challenge for artificial intelligence 
developed within the academic AI community or the games industry. Some initial 
steps have been made by the project work, but significant challenges lie ahead.  

Beside the potential application of the model and architecture to a computer 
entertainment environment, the model is generic and can be used as well for “serious” 
application which involves distributed emerging behavior, scenarios based simulation, 
complex agent-based modeling including emotional, reactive and deliberative 
reasoning. 

The authors can conceive of a huge number of areas in which the project work can 
be improved. The developer sincerely hopes that it may prove to be of some merit in 
influencing new research directions or game designs that recognize the potential that 
resides in teamwork and leadership as resources for driving future innovation in 
artificial intelligence.  
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Abstract. In this article, we intend to characterize, at least on BDI
(Belief-Desire-Intention) basis, a class of games G for which there is a
MAS and vice-versa. As a consequence, criteria of rationality for agents
can be directly applied to players and vice-versa. Game analysis formal
tools can be applied to MAS as well. The main results of this article are
the following two lemmata.
Lemma I: Every MAS belonging to G is, essentially, a Game.

Lemma II: Every Game can be implemented as a MAS and Equilibria
are Optimal Desires Satisfaction.

1 Introduction

Multi-Agent Systems (MASs) have been widely used as an adequate abstraction
for the design and implementation of a large sort of applications. A system of
agents whenever appropriately arranged is called a community of agents. This
arrangement concerns the integration of individual beliefs towards common be-
liefs, integration of agent’s individual plans into common plans and finally the
integration of agent’s individual actions performing common actions. This in-
tegration follows and is induced (in a very precise mathematical meaning) by
the way the community is organized, that is, by the way each kind of agent
communicates each other and the way that they can communicate their beliefs
and interact among themselves. This establishes a kind of architecture for a
MAS. This article regards to the view that a MAS is strongly based on the
integration of the belief-intention-planning of the individual agents in order to
build a whole community of agents. Specific aspects of action and ontological
(structured) concerns of MASs are out of scope of this report.

Software Architecture is a well-established and studied subject whenever con-
cerned to components. Let us discuss briefly some points that raise when com-
paring MAS and Component-Based architectures. Differently from Components,
Agents have a belief model, and a set of intentions, that rules plans, which are
supposed to perform actions in order to satisfy some of their intentions. The
interdependence among intentions, the set of beliefs and the generated plans
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become the behavior of an agent more sophisticated than a sole component be-
havior. Even for a reconfigurable component architecture, the behavior of their
components is more rigid than the agent case. In general a dynamic recon-
figuration is obtained by changing the channels of communication among the
components. This can be done by changing the connectors in a predicted way (a
connector has a finite amount of ports). On the other hand, despite the amount
of possible paths of communications among agents being finite as well, the way
of a MAS changes the channels of communications is strongly related to the
belief-intention-planning feature of the agent, and this is less predictable than
the component’s case, since the evolving of an agent’s belief is a feature more
related to logic than to computation (in the sense of behavior). The literature
call BDI (Belief-Desire-Intention, see [9]) model to this logical approach that
integrates belief, intention and planning in order to model the main concerns of
an individual agent.

We will take the BDI model as our starting point for an individual agent
definition. Regarding the MAS architecture discussion, we take as an essential
aspect to be dealt with the integration of the very logical aspect of each BDI
agent model. Thus, we take a MAS, in the context of belief-intention aspects,
as the harmonious integration of each individual agent’s model in the whole
system1. As one can expect, an (individual) agent of a MAS does not have to
believe or even know the global intention of it. The MAS behavior should be
essentially driven by the rational aspect of each of its components. This very
feature regards (rational) players in a game, from the particular point of view
of Game Theory.

Game Theory is a branch of Mathematics, extensively used by economists and
social scientists, well-suited to define and study rational behavior in the con-
text of cooperative and non-cooperative environments. Equilibria notions (after
Nash) play a central role in solution concepts regarding a great variety of Games
assuming the players are rational. Game Theory is mainly taken into account
when the scientists want to predict and study global phenomena from individual
known behavior. Typical examples of this kind of research come from phenom-
ena emerging from Markets, Auctions and Elections. One can observe a strong
similarity between the rationales coming from Game Theory and Multi-Agent
Systems modeling. Game Theory provides some general Game definitions, some
of them equivalent in a certain sense. It also provides solution concepts to each
kind of Game, pointing out relationships among the different solution concepts,
as for example the “Folk Theorems” relating equilibria points in a game to the
repeated game version. Algorithms for searching and formally identifying solu-
tion concepts in a (generic) game are worth of study for theoretical and practical
notions. It is known that the decision problems associated to most of the Game

1 An interesting and natural consequence of this view of a MAS is that it has also its
own BDI model, representing common beliefs, intentions and performing a common
plan to fulfill its goals, taking a coalition of agents as a new kind of agent. However
this broader view of MAS, as a single agent, seems to be of no help in practical
design of agent-based systems.
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Theory solution concepts belong to higher complexity classes (starting with the
NP class, of course). Apart from that, it seems to be no better alternative for
the social sciences, mainly when analytical2 tools do not apply.

The previous discussion raises up the point of having Game Theory as a worth
tool to be applied in the analysis of MAS validation and designing. The existence
of formal tools (programs), some of them listed in a subsequent subsection, that
help in this validation task turns out feasible the formal validation of MAS. On
the other hand, MAS themselves can be applied to model and formally study, by
means of simulation, the kind of phenomena typically subjected to Game Theory
analysis. In [1] it is shown a quite good comparison between Game Theory and
MAS formal analysis of the market of electricity. The conclusion one could draw
from these raised points is that Games and MAS are in a 1-1 relationship. This,
not yet drawn, conclusion is the main guideline and motivation of this article.
We intend to characterize, at least on a BDI basis, a class of Games for which
there is an equivalent MAS and vice-versa. The notion of equivalence of MAS
and Games will be taken as logical, since BDI has a logical counter-part played
by Lora’s3 theories.

1.1 More Motivations to Our Goal

By taking the main defining aspects of the BDI model as specific strategies in
an extensive game (see [6]) and the behavior of an agent as a player’s (possible)
sequence of steps in this game, we intend to show that in some cases, a MAS
can be viewed as a kind of coalition game with the coalition among the players
representing the integration of each player individual strategy into the whole
strategy of the coalition game. From that point on, one can proceed a formal
analysis (verification, validation of properties as well as theorem proving) of a
MAS using formal tools designed for game solution concepts analysis.

In [3] a logical view of game-analysis is shown. A logic, GAL, for Game Analy-
sis Logic, based on first-order CTL (computational tree logic) is defined and used
to specify solution concepts as well as ordinary properties on specific games.

Although historically Game Theory has been considered more suitable to
perform quantitative analysis than qualitative ones, there has been a lot of ap-
proaches that emphasizes Game Analysis on a qualitative basis, by using an
adequate modal-logic in order to express properties of the games as well as their
solution concepts (existence of Nash-equilibria, core, etc). One of the most rep-
resentative of these logics is ATL (Alternating-time Temporal Logic), and, we
point out [7,8] as excellent references on this approach. However, since ATL is a
propositional logic language and BDI has been firstly developed on a first-order
setting using LORA (see [9]), we choose to develop our approach using GAL
itself, since it has first-order features and is a logic language which can express
strategies in a suitable way. In [4] it is shown how GAL is able to specify Strate-
gic Games and Coalition Games with Transferable Payoffs, as well as their main

2 Based on the differential/integral equations mathematical paradigm.
3 LORA is the logical language designed to specify agents regarding to the BDI model.
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solution concepts, namely, Nash Equilibrium and Core. Besides that, we have a
prototype of model-checker for GAL that has been developed according to the
main intentions of the approach advocated here.

This article argues in favor of taking agents as players in a game and that the
definition of an agent is made by the definition of his strategy in the game. The
main results of this article are to characterize a class G of MAS as Games such
that the following two lemmata hold.

2 The Background Theories: BDI and Game Theory

It is assumed a basic reader’s familiarity with first-order and modal logics, in-
cluding Kripke models and Bisimulation.

In order to have a theoretical basis to use Game-Analysis tools to proceed
the formal analysis of agents and MAS, we need to argue that from the very
starting of the design of an individual agent, we can take it as a player in a
specific game. We base our argumentation on the BDI model for agents. The
BDI model is based on three logical modalities, namely, the Belief modality,
the Desire modality, the Intention modality, forming a Multi-modal logic, the
first modality is a KD45 modality (see [5]), the other two are KD modalities.
GAL is based on CTL and CTL has the ∃X (“in some next state”) modality
as a KD modality and ∃U (“until”) modality behaving as a KD4L fixed-point
modality over ∃X . Thus, in principle, the expressiveness power of both logics are
comparable, not forgetting that both are first-order logics. However, the Barcan
principle, as well its inverse, that are required in GAL, seems to be liberalized
in LORA (the logical counter-part of the BDI model). The temporal aspects are
different, since LORA is based on CTL∗, while GAL is based on CTL. However,
since GAL has only Games as models, this makes inessential the small differences
discussed above. The first lemma is a way of expressing, by means of strategies,
the Desire-Intention aspect of BDI, while ensuring that the states of the defined
game provide enough Belief for the player.

2.1 The BDI Model

In this subsection we state the basic terminology, definitions and notations of
the BDI model for (individual) agents. With the sake of a succinct presentation
we use some concepts of the possible worlds semantics of the logical language
LORA, presented in [9]

This article does not intend to provide new definitions for BDI-agents. Thus,
the mathematical terminology used in the sequel only has the purpose of provid-
ing a shorter text. The following definition is an extensional (model-theoretic)
counter-part of the well-known BDI intentional definition such the one found
in [9]. However, the reader must take into account that there is an intentional
meaning for the agent. This intentional meaning has the role of establishing a
relevant distinction between Beliefs, Desires and Intentions, namely:
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– Beliefs consist of information available to the agent.
– Desires are “things” that the agent would like to make true. The only restric-

tion on desires is the consistency. Agents cannot have inconsistent desires.
– Intentions are desires that the agent has chosen and committed to.

Definition 1. A temporal structure < T, <T > is a set T and a partially, discrete
and serial order on it4. A temporal sub-structure < T ′, <T ′> of < T, <T > is such
that T ′ ⊆ T and <T ′⊆<T .

Sometimes we use the carrier set T when referring to a temporal structure <
T, <T >.

We remind the reader that a first-order language is a set of functional and
predicate symbols of any finite arity5. Since we deal with computational agents,
the following definition of MAS restricts the first-order language to a finite set
of symbols, both predicates and functionals. In that case we name it as a finite
first-order language.

Definition 2. Given a finite first-order language L we call L-state a pair <
SL, σ > where SL is first-order structure6 for L and σ : V ars → Dom(SL) is
an assignment of values for variables.

Definition 3. Let < T, <T > be a temporal structure. A click over T is a pair
(t1, t2) ∈ T ×T , with the property that there is no t ∈ T such that t1 <T t <T t2
and t1 �= t and t2 �= t. Clicks(T ) is the set of all clicks over T

Definition 4. A MAS over a first-order language L, with a set of agents A, and
(finite) set of actions X, is a structure of the form
< T, W, (Ba)a∈A, (Ia)a∈A, (Da)a∈A, (Sw)w∈W , AcX , AgX >, such that: 1- W is
a set of temporal substructures of T ; 2- Sw is a set of L-states indexed by the
time structure Tw; 3- Ba, Da, Ia ⊆ W × T × W are, respectively, the Believe,
Desire and Intention Kripke relationships between the states, for the agent a;
4- AcX : Clicks(T ) → X associates an action with each time step in T ; 5-
AgX : X → A associates an agent with each action in X. The following restric-
tions on the structure must hold:

– For each agent a, if < w, t, w′ >∈ Ba then t ∈ Tw ∩Tw′ . Analogously for Da

and Ia respectively.
– Define Bt,w

a = {w′/ < w, t, w′ >∈ Ba}, and < w, w′ >∈ Ba,t, iff, w′ ∈ Bt,w
a .

For each a and t, Ba,t must be a serial, transitive and euclidean7. Analogous
we define Da,t and Ia,t and these relations must be serial for each a and t.

In the above definition a MAS is identified with its semantics. A state St rep-
resents the description of the MAS at time t. A world w ∈ W represents the
beliefs on the evolving, in time, of state descriptions.
4 A relation <T is serial, iff, ∀t1∃t2(t1 �= t2 ∧ t1 <T t2).
5 A functional symbol with arity 0 (zero) is called a constant.
6 Space limits prevent us to write down the usual definitions regarded to first-order

logic semantics.
7 R is euclidean, iff, if < w, w′ >∈ R and < w, w >∈ R, then < w′, w′ >∈ R.
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For the sake of terminology and notation, we denote as sub(t, w) the subtree
of Tw determined by the node t, whenever t ∈ Tw.

It is worthwhile mentioning that the above extensional definition is the se-
mantics of an intentional definition of the MAS, usually defined by means of a
programming of each of its agents in a loop-control as, for example, the one shown
in algorithm 1. It is well-known that this control-loop can be more detailed, such
that it includes assessment and reconsideration of Intentions, soundness of Plan-
ning with Desires, and more. The algorithm 2 shows a refined version of the
previous one. Both versions are from [9] and can be seen as particular cases
of the semantic Planning function defined below. This article takes as free the
self-explanatory content of these algorithms. The reader must observe that, ac-
cording to the BDI definition taken in this article, there may be simultaneous
actions in the MAS.

Algorithm 1. Agent Control Loop
B := B0;
I := I0;
while true do

get next percept ρ;
B := brf(B, ρ);
D := options(B, I);
I := filter(B, D, I);
π := plan(B, I);
execute(π);

end while

The reader is invited to see the agents intentionally defined above as denota-
tions, according to the MAS definition 4, of either version of the shown agent
control-loop algorithms. The intuitive meaning of these control-loops, regarded
to the MAS extensional definition can be understood as following:

– The beliefs of an agent are almost dependent on the evolving of the time,
since this is the only effect that can cause new percepts. It is worth noting
that the evolving time can be caused by an action of (possibly) other agent;

– The Desires depend on the (new) beliefs and the (old) intentions. This means
that from a (hypothetical) belief position the agent may go further when
considering intentions (next item);

– The (new) intentions that can be taken by the agent include those can be
considered by an action raised hypothetically by the agent. This is very
similar to a look-ahead “attitude”;

– Re-considerations may come and the consequent soundness analysis is among
the tasks towards efficiency.

In fact an agent planning can be thought as a procedure that evaluates the set
of Beliefs, Intentions and Desires of an agent and produces a structured action
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Algorithm 2. Refined Agent Control Loop
B := B0;
I := I0;
while true do

get next percept ρ;
B := brf(B, ρ);
D := options(B, I);
I := filter(B, D, I);
π := plan(B, I);
while not (empty(π) or succeeded(I,B) or impossible(I,B)) do

α := hd(π);
execute(α);
π := tail(π);
get next percept ρ;
B := brf(B, ρ);
if reconsider(I,B) then

D := options(B, I);
I := filter(B, D, I);

end if
if not sound(π,I,B) then

π := plan(B, I)
end if

end while
end while

(a term in an algebra action). This structured action will afterwards executed
subterm by subterm, sometimes yielding concurrent actions applications. How-
ever, each time either Beliefs, Intentions or Desires sets are update, the currently
stored plan is revised to maintain soundness. From an abstract setting, the plan-
ning is a mapping from Beliefs, Intentions and Desires into evolving L-states,
so to say, a temporal substructure of T . Of course this is a simplified version of
planning, since we are taking a planning application as an atomic procedure. We
briefly discuss at the conclusion how to consider the more sophisticated setting
at the theoretical level, without going too abstract. The Plan function, defined
below is the semantic counterpart of the just discussed concept of planning.
Considering the planning as a relation instead of a function, in order to get into
non-deterministic plan generation is of courser formally feasible in our setting,
but this would make the notation and definitions heavier. More than that, the
Plan semantics function, for reasons of consistency, is a partial function.

In the following definition we consider Bela = Image(Ba) ∪ Range(Ba) and
analogously for Desa and Inta.

Definition 5 (Planning Semantic Function). Let M =< T, W, (Ba)a∈A,
(Ia)a∈A, (Da)a∈A, (Sw)w∈W , AcX , AgX > be a MAS. A planning function for
the agent a ∈ A is a partial function Plana : Desa × Inta ×Bela → Inta ∪Bela,
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such that, for all t ∈ T , if < w, t, w1 >∈ Ba, < w, t, w2 >∈ Ia, < w, t, w3 >∈ Da

then Plana(w1, w2, w3) is defined.

The following definition does not apply to all kinds of BDI MAS, it is restricted
to those which do not allow simultaneous actions applications belonging to dif-
ferent agents. The reason for this restriction is organizational. In this article
we consider this kind of MAS with the sake of a simpler presentation of the
relation between Games and MAS. At the conclusion we discuss the extension
of the obtained results to a broader class of MAS. We call a MAS under the
previous restriction as one-agent-turn MAS or OAT MAS.

Definition 6. Let M =< T, W, (Ba)a∈A, (Ia)a∈A, (Da)a∈A, (Sw)w∈W , AcX ,
AgX > be a OAT MAS. Plana, for each a ∈ A the Planning (partial) func-
tions of each agent planning. The situation tree of M , regarded to the family
of plans Plana(a ∈ A) is defined as the labelled rooted tree SitM (Plana) that
comes from the application of the following steps:

1. The root of SitM is the same root of T and SitM (Plana) is initially taken
as T ;

2. The labels of SitM are determined by AcX ;
3. If, for an agent a, < w, t, w1 >∈ Ba, < w, t, w2 >∈ Ia, < w, t, w3 >∈ Da

and wp = Plana(w1, w2, w3), then t has sub(t, wp) as a subtree of it in
SitM (Plani);

4. If there is a time t ∈ SitM , such that, there are two or more Clicks labelled
with the same action v ∈ X leading into times t1, . . . , tk and {St1 , . . . , Stk

}
is not a chain8, then replace all of these subtrees by an infinite path of clicks
labelled by v9;

5. Each non-terminal node u of SitM (Plana) is labelled with a ∈ A, such that,
for all t ∈ Clicks(T ) that are outgoing branches of u, AgX(AcX(t)) = a
holds.

One can think of SitM (Plani) as describing all alternatives of evolution of the
behavior of M , regarding the plans Plana(a ∈ A). In the sequel (section 3) we
obtain a game definition from SitM (Plani).

2.2 Game Theory Basics

Space limitations prevent us to mention the rationale of the definitions related
to Game Theory. In the sequel, we write down the definitions and theorems used
in this article. Mathematical definitions used in this article to prove the lemmata
of the next sections can be found in [6] and [2].

8 A set {A1, . . . , Ak} of L-structures is a chain, iff, there is a permutation p : [1, k] →
[1, k], such that Ap1 ≤ Ap2 ≤ . . . ≤ Apk , where ≤ is the substructure relation.

9 The fact that the set of L − Structures Sti is not a chain means that if the MAS
evolves by taking the v action then there will be no L-structure ensuring the seman-
tics of the system.
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Definition 7 (Kuhn1953). A n-person game in an extensive form, extensive
game for short, Γ is a structure consisting of the following data:

– A finite set N = {1, 2, . . . , n} of players.
– A (rooted) tree γ, the game tree.
– A partition of the set of non-leaf nodes of γ into n+1 subsets P0, . . . , Pn. The

nodes belonging to P0 are called chance nodes, since they have probabilities
attached to their outgoing branches. For the other subsets, Pi is the set of
(possible) moves of player i in γ.

– For each node p in P0 a probability distribution over the outgoing branches
of p.

– A finite set of actions α. Each outgoing branch, from a non-leaf node, is
labelled with an unique element of α, except the chance branch which is
labelled with a real number (a probability).

– For each i ∈ N a partition of Pi into n(i) information sets, Bi
1, . . . , B

i
n(i),

such that for every j = 1, n(i):
• All nodes in Bi

j have the same number of outgoing branches, with a 1-1
correspondence between the sets of respective outgoing nodes of different
nodes in Bi

j.
• Every path in the tree from the root to a leaf-node visit each Bi

j at most
once.

– For each leaf-node t, an n-dimensional vector h(t) =< h1(t), . . . , hn(t) > of
payoffs.

– The structure just being described is common knowledge among the players.

The last item characterizes the class of games of perfect information. In a game of
imperfect information this clause is not included. Figure (a) shows the extensive
form of the Matching Pennies game.

(a) - Matching Pennis game

3 Agents as Players

We want to move toward a Game-Theoretical foundation for MAS, mainly in
the context of computational agents. Thus, in this article we focus only on this
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kind of MAS. Natural agents and Games running on concrete (Real) entities
are left outside the scope of this work.

In what follows, agents will always be taken as computational agents, as well
MAS refers to a system of agents in the sense of 4. Consider an agent A in a
MAS M. The main analogy between agents and players in a game is depicted
by the following association.

Agent Concept Game Concept
Beliefs State-Description
Intention Strategy
Desires Maximization of Payoffs a

a The assignment of payoffs will be based on the extensional semantics of the MAS
itself.

We will see that the payoff assignment will be the key of this relationship,
on the other hand it can be seen as natural from the extensional point-of-view.
A MAS, in general, yields a repeated game. The following discussion would be
better understood if the reader could consider the portion of the MAS associ-
ated to the stage game. Anyway, the analogy between MAS and Games can be
observed in the following table.

Agency Theory Game Theory
Agents Groups Players
Common Beliefs Game Tree
Agent’s Intentions Player’s Strategies
Desires Satisfaction a Existence of Equilibria

a Here we refer to the satisfaction of desires of a set of agents.

Before we show how to assign a game to MAS M , we have to take the care of
removing infinitely long paths in SitM (Plani) that are meaningful in the game-
theoretical interpretation. These paths consist of L-states that are bissimilar. As
it happens with infinitely long paths, two cases are possible:

– There is no repeated elementarily equivalent L-state in the path.
– There is at least one repeated elementarily equivalent L-state in the path.

The first case will never result in a finite path if bissimilar states are identified.
The other case, however, may lead to a finite path, just in case that the bissimilar
state that repeats infinitely often is the one that causes the infinite feature of
the path. This seems to be strongly related to the well-known “Stage-Game” in
an infinitely repeated game. This discussion motivates the following definition.
This will be used in the game-tree definition of the game associated to a MAS
as states lemma 1.
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Definition 8. Consider a MAS M over a first-order language L and
SitM (Plani) as stated by definition 6. Given two elementarily equivalent L-
states s1 and s2, we say that s1 ≡ s2(mod(SitM (Plani))), iff, s1 and s2 are
bissimilar.

It is a routine task to check that the definition above is an equivalence re-
lation. Thus we define SITM (Plani) as the quotient of the transition system
SitM (Plani) regarded to ≡, with the addition of the following: Any transition
that, after the quotient, has the same target and source will be removed. The
reader can observe that the later makes SITM (Plani) a tree.

The following definition establishes in a more detailed way the relationship
depicted by the above tables.

Definition 9. Let M be a MAS over a first-order language L with (finite) set
of agents A, (finite) set of actions X and family of plans Plana(a ∈ A), then
there is an extensive Game GM , such that, each agent A of M corresponds to a
player pA, in a way that :

– The game tree of GM is the situation tree SITM (Plani).
– The partition of the non-terminal nodes of SITM (Plani) is P0 = ∅ (there is

no chance node at all). Pa is the set of all nodes labelled with a.
– The partition of Pi, for each i, is B1

i = Pi.
– The set of strategies are determined by the branches in a free, in the mathe-

matical sense, way.
– The payoff of a terminal node, for each agent a, is the number of desires of

a that are satisfied by the L-state associated to this terminal node. Thus the
payoff vector has da as the component a, where da is the number of satisfied
desires.

Lemma 1. In the conditions of the above definition, each subgame equilibria of
GM expresses a L-state where every possible desire for each agent is satisfied.

Proof-Sketch. A subgame equilibria in GM is a node in SITM (Plani) that
represents a position in the behavior of the M , such that, any further evolution
(in time) of M puts the system in a state that cannot evolve to a state with
more desires satisfied, not considering the other agent moves. On the other hand,
any state in M that has an optimal number of desires satisfied for each agent
a, independent of the other agents evolution in time, by the construction of
SITM (Plana) and GM is a subgame equilibria in the later. Thus, the subgame
perfect equilibria correspond to states where the agents have optimal satisfaction
regarding to desires, that is, are states which have optimal social satisfaction.�
For the following lemma does not matter whether the game is or not is in an
extensive form. However, in both lemmata the games are of perfect information.
This hypothesis should be proved to be non-restrictive, but this result has not
been worked yet.
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4 Players as Agents

On the other hand, the following lemma is simpler, since any player in a Game
(extensive form or not) can be modeled by an Agent in a MAS representing
the game itself. As a matter of fact, the definition of the MAS follows the
relationship stated by the tables of the previous section. The fact that some
games are not computationally representable does not bother the association
of MASs to games. Only computational games can be implemented as MASs.
The image of a computational game is a (computational) MAS, hence, may
belong to the class G of OAT MASs. Indeed, any computational game, with
non-simultaneous moves, is mapped into MAS that belongs to G as the following
lemma holds.

Lemma 2. Let g be a computational game, with non-simultaneous moves, then
there is a MAS Mg ∈ G that implements g in a way that the desires of Mg are
the maximization of the payoffs of the game, the intentions are the strategies and
each player corresponds to an agent. Equilibria (subgame perfect equilibria) of
the game are states of optimal social satisfaction10

The proof sketch for lemma 2 is as follows

– Each agent corresponds to a player.
– The desire of the player is to maximize the payoff.
– Beliefs are state descriptions of the extensive game.
– The strategies of each player determine the Planning of the each agent.
– States of maximal social of M (if any) are subgame perfect equilibria of the

game.

5 Conclusion

This article shows that for Games and OAT MAS are equivalent models of
behavior and rationality. As a consequence, criteria of rationality for agents can
be directly applied to players and vice-versa. Game analysis formal tools can be
applied to MAS as well.

It seems to be a routine task the extension of the results mentioned here to
general MAS (non-OAT) and games that allow the simultaneous actions of the
players, as the models discussed in [6] (pp. 102–13). Other way of dealing with
MAS with the occurrence of simultaneous actions, from different agents, is the
construction of the situation semantics (SitM (Plan)) taking into account sets of
agents as nodes. In this way the situation semantics should be associated with
a Coalition game (see [6]), a cooperative model of games. The solution concept
that must be used in this case is that of core. Fortunately, cores seem to be
associated to the equilibria states of an extensive Coalition game associated to
SITM (Plan), when the payoffs are taken according to the coalitions that appear
10 A state of optimal social satisfaction is a state where each agent has the most pos-

sible, whatever action of other players, satisfaction.
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in the situation semantics. In fact, when agents cooperate among them, it is
natural that common desires, intentions and beliefs emerge. A consequence of
this is that the game would modify the way the payoffs are assigned. Coalition
games with transferable payoff seem to be the adequate model for this case.
One of the future direction of our research is the investigation of the following
conjecture

Every MAS can be viewed in the form of a Coalition Game with
Transferable Payoff

such that the core is the semantics of the MAS.
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Abstract. As the information technology rapidly expands (regardless of the 
technology area) collaboration, information sharing and distributed computing 
become inevitable phenomena (i.e. e-commerce, e-health, e-science etc.) [1]. 
Since the complexity is a driving force behind the enhancements, new network-
centric infrastructures and solutions are proposed to address the problem. Grid 
is an example solution that handles the situation in a cost-effective and efficient 
manner. There are available grid based infrastructures to solve scientific (or 
other) type of applications which need harmony among distributed hardware, 
software resources and human users. To achieve better usage of resources in a 
secure and intelligent way, scalable, reliable, and dynamic infrastructures are 
current requirements. Based on the current trends, we propose a secure, 
dynamic, and intelligent resource management and access method employing 
mobile agents along with the grid infrastructure.    

1   Introduction 

Nowadays, computer users are managing gigabytes or terabytes of data with their 
computation equipments. This usage contains file exchange through a network, 
storing them in a local storage, or processing the data based on some criteria [2]. Even 
though rapid enhancements in computers and related technologies are satisfy the most 
of the processing and storage need, some applications still require massive amounts of 
CPU power and/or storage areas (GNOME, satellite imaging etc.). The common 
concern (or limitation) is the environment in which the applications are required to 
run. It is open, heterogonous, and dynamic. 

Distributed computing, which is a proposed solution to the aforementioned 
requirements, which has been used for quite some time with technology specific 
security implementation catering to the requirements of secure data and services, as 
can be seen in RMI, CORBA, DCOM technologies. Those technologies have been 
adopted into enterprise environments with composition of these environments in 
terms of users, resources, and static services.  

Any distributed computing platform (including grid) needs to satisfy scalability 
and performance demands. What clearly distinguishes grid from these platforms is its 
features resulting in security requirements which cannot be addressed by existing 
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security technologies for distributed platforms. Elements of grid are decided in a 
dynamic manner, such that the trust relationship among these elements needs to be 
established during application execution time. 

A grid is a hardware and software infrastructure that provides dependable, 
consistent, pervasive, and inexpensive access to high-end computational capabilities 
by means of establishing, managing, and evolving multi-organizational federations. 
Dynamic, autonomous, and the domain independent nature of the grids allows 
ubiquitous access to computing, data, and services [3].  

There are complexity and security challenges for grid as well as other distributed 
computing approaches that prevent them to be used conveniently. The autonomy and 
user involvement, resource access, and billing can be listed as complexity challenges 
whereas authentication and privacy are the main concerns for security of the system. 

Although the challenges exist, the community is trying to grant a service-oriented 
architecture which is available anytime and anywhere in a secure way (i.e. use of 
intelligent agents). Distributed heterogeneous grids are considered an ideal place for 
establishing an agent based network for dynamic real time decision making. Agents, 
as autonomous entities, are capable of adapting to the environment to complete the 
life cycle by means of learning, interacting, communicating, and decision making. 
Therefore, agents are subject to metamorphism in the sense that the self learning 
mechanism helps the adaptation process. Furthermore, predictability of an agent 
serves as foresight which is a much needed tool for a dynamic distributed 
environment [4].  

Based on expectations and concerns, our objective is to provide an environment 
where interactions, communications, and collaborations are conducted in a reliable, 
secure, and intelligent manner. In the proposed framework, mobile agent’s code and 
state will be protected from malicious attacks by employing a simple and secure 
DED1 ciphering technique. Use of such decomposition based ciphering architecture 
with an intelligent reasoning will result in low resource usage and sufficiently secure 
execution. Moreover, as fault tolerance is one of the inevitable requirements for the 
current distributed systems, the system allows the code or state recovery without 
using backups or large log files.  

2   Background 

Grids propose to complement and extend distributed resources by forming a dynamic 
collection of resources – users, machines, and/or applications – spread across multiple 
enterprises, continents supported by a software backbone called middleware [5]. 
Some of the very common attributes of grid environment are: 

1. Coordinated resource sharing in dynamic, multi institutional virtual 
organizations. 

2. Users and resources may be large, unpredictable and dynamic at any point 
3. Each resource and user will have local policies and technologies that cannot be 

replaced by VO (Virtual Organization) 

                                                           
1 DED (Decomposed Encoding and Decoding) is developed by the authors and the patent is 

pending. 
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4. Users and resources located in different organizations which do not have trust 
agreements 

5. These organizations have different security protocols and implementations 
6. Grid interactions are basically interactions between services and services acting 

on behalf of users        

More precisely, these are the security challenges posed by the dynamic and 
disparate composition of grids. How remote users can access a resource in a Virtual 
Organization is still an unsolved security problem as VO resources and users can be 
part of different VOs simultaneously [6, 7].  

There are several proposed approaches to handle the grid related security and 
resource access problems. Some of them are Cluster-on-Demand (COD) [8], 
Workspace Management Service [9], Virtual appliances [10], and semantic grid [11].  
These approaches are mainly to create a big virtual cluster by including the remote 
resources and its management. The main problem with these approaches is that they 
are either not considering the security or rely on GSI (Grid Security Infrastructure).  
Another issue is the job management; some of the approaches are not using an 
intelligent approach to execute a job while others are only focusing how to execute it. 
Since the main goal is to enable the user to identify and use the fastest and cheapest 
available resource regardless of location,  there should be an entity that can do both 
(resource access and job management) in cost-effective, secure, and fault tolerant 
way. In addition, this entity should satisfy the reservation, provisioning, scheduling 
requirements of the grid user.  

Mobile Agents (MA), a subset of the agent theory, equipped with a profile of user 
wishes can achieve their objectives in a deliberate manner. Fortunately, they can also 
communicate with other agents without guidance of the creator. Agents have the 
following popular features: dynamism, intelligence, decentralization, and flexibility 
[12]. Combining the MA advantages with an efficient cryptosystem will result in a 
powerful and reliable framework that can be used by any information system which 
has privacy and speed as prime requirements. It can be made suitable for use in 
dynamic environments by employing MA. In turn, MA on grid technology achieves 
scalable intelligent system. 

3   Design 

Currently, grid and agent communities are focusing on open distributed service 
systems from different perspective. Grid is focusing on creating a reliable and secure 
resource sharing mechanism, while agents are focusing on intelligent architecture and 
problem solving. There is a convergence between approaches. Grid needs 
autonomous behavior, which can be attained by means of agents, agents requires a 
secure platform to run, which grid provides.  

The proposed approach is a mobile agent based intelligent interface that works 
with the grid tools like GRAM (Grid Resource Access and Management), GridFTP, 
and MDS (Monitoring and Discovery Service), as shown Figure 1.  Current 
Delegation and single sign-on features are done by using proxy certificates which 
have two problems. The first one is the duration of certificate which is usally effective 
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for 12 hours, and may not be long enough to finish the job or may be too long for a 
specific job which may be compromised. The second problem with the certificate is 
its protection. It is stored in /tmp folder in unix machines and protected only by file 
protection. Since mobile agents have the predictability feature based on current 
knowledge, a certificate can be issued based on estimated job execution time.  

Moreover mobile agent can either use contrat-net type of coordination method or  
take the job upon itself to the resource to execute it.   

The architecture, as a resource manager, utilizes resource by means of agent server 
on each node considering the fact that nowadays over 70% of the CPU power is 
wasted or not utilized. Condor [13] like approach has an advantage which is being 
able to work on heterogeneous network. The heterogeneous nature of agents can 
coordinate the nodes to work together.  

3.1   Agent Communication 

A predictable coordination approach must be employed to make agents successful in a 
dynamic environment [14] so that they can solve problems that are not easy to handle 
by a single agent.  In an agent environment, communication with the other agents is 
the way of coordination to get the job done and/or to achieve better and efficient 
results. Another advantage of coordination is the capability of finding a resolution, in 
case of conflict.  Agents have to learn from the interactions and search so that they 
can perform more effectively. 

 

 

Fig. 1. The system overview 
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Integration of agents with grid and web services is one of the biggest challenges. 
The use of XML technology as a MA communication tool serves as a competitive 
option to overcome this challenge. There are a numerous number of communication 
theories for the area and, although some organizations are trying to set some standards 
(i.e. FIPA, OMG) over varying theories, there is still no widely accepted approach.  
XML is used to mark up the data to form a specification such as the Simple Object 
Access Protocol (SOAP) for data exchange between systems. Since XML describes 
the data that contains elements and attributes, it is useful for data exchange between 
applications and domains [15]. Due to the aforementioned advantages over the other 
techniques, XML is preferred as a communication tool. 

A sample of an XML based message content is shown Figure 2. In this message, Ai 
is used to show the destination Agent ID (line 2), Am is used to show the source 
Agent ID (line 3), t is used to show the time in which the message is created (line 4), 
and finally the message itself (line 5). 

<message ID> 
<destination> Ai</destination> 
<source> Am</source> 
<time> t </time> 
<message> message body </message> 
</message ID> 

Fig. 2. A sample message 

Agents can interact with the other agents in the local or remote hosts for 
collaboration purposes. If the messaging occurs in a same host, the message is written 
into a shared memory. It is similar to a blackboard type of coordination model where 
the interaction and coordination can be achieved through an asynchronous structure.  

3.2   Agent Transfer 

The agent transfer is one of the fundamental issues of a Mobile Agent framework in 
which agent interacts with its environment for the perception and learning purposes. 
The way that those interactions are handled determines the robustness and the 
reliability [16]. A fault tolerant agent movement is a requirement for dependable 
distributed environment addressed in several recent researches [17].   

Considering current MA threats of eavesdropping and masquerading, 
communication and transfer becomes an increasingly important matter. In order to 
overcome such threats, MA designers use several encryption/decryption techniques 
between sender and the receiver [16].  

In our study, use of comparatively new encoding technique, DED, will yield to fail 
the aforementioned malicious attempts due to its unique design and lack of the right 
decoding information. Moreover, adapting the Agent Transfer Protocol (ATP) [18] 
will handle agent transform from one execution medium to another (Figure 3).  When 
an agent request a dispatch from its current host, (GO remote(x)), the host will contact 
and agree upon the departure details (i.e. agent name, user) with the intended remote 
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server. Due to the security constraints, DED provides a mechanism to maintain the 
secrecy of agent code and its state. 

During first departure, the agent code is encrypted using DED )(
1 iAe i

π  with a 

pseudo- random function with key 1k . When the agent finishes its execution in Host 
A, it requests transfer to the second stop in the itenary (Host B). The code and state 

are encrypted using 2k  and 1k  respectively. The Host B can not access the state 

gained in Host A ( AS ), because it does not know the 1k .   

After ciphering, the agent is transferred to Host B in )()(
12 ai SeAe ii

ππ +  

form. In order to employ the fault tolerance after deciphering the agent’s code, 

mediator B deploys the checksum ( )( iACS ).  The checksum result and 2k  are sent 

to the agent’s Owner as message ( 1M ) in the ciphered form to prevent attacks on the 
message. 

Home Host A 

Host B 

Host C 

)(
1 iAe i

)()(
12 ai SeAe ii

))(()(
123 abi SeSeAe iii

)))((()(
1234 abci SeSeSeAe iiii

))(( 31 2 iACSkeM i

))(( 32 3 iACSkeM i

 

Fig. 3. ATP protocol 

4   Decomposed Encoding and Decoding (DED) 

Current grid technology is being used in static networks. Existing grid environments 
uses public key architecture (X509) for security implementations. As known, for 
efficiency, public key along with a symmetric algorithm is advised.   
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In the proposed framework DED is used, as a symmetric algorithm. DED, which 
prevents unauthorized receivers from accessing or understanding transmittals, is a 
substitution cipher with layering ability. With the 52 random letters (26 upper case 
and 26 lower case) assignment, provides the possibility of 8.07 x 10E67 different 
representation.  

The formal definition of the cipher system is } K, C, ,{M T= , where T is 

plaintext, C is ciphered text; K is key space and is layer number. In addition, it has 
at least two nodes: encryption and decryption. 

4.1   Encryption 

Definition 1: The representation of source document is defined  

as TtT i ∈Ζ= ,90   where 90Ζ  denotes a domain with 90 elements, it  is 

possible plaintext which is composed of 26 upper/lower case, 10 numerals, and 28 
special characters (including space), and i is communication instance. 

Definition 2: The possible key space is represented as 5252 PK = , where Ki ∈π  

reflects the key driven from one of the Pseudo Random Number function 

( )( ii sRnd=π ) in which is shows seed. 

Definition 3: The ciphered text symbolized as 52Ζ=C  has a domain of 52 elements 

and  Cc i ∈  is member of C domain. 

Based on these definitions, an initial message can be denoted as; 

( )
( )[ ] ( )[ ] ( )[ ]{ 0for         

0for                                              

1
1

1
1

>∨∨
=

−
−

−
−= ilesete

isPKi
i

il

ii
il

ii
il

i

i
c πππ

               (1) 

where i  is layer number, PK is Public Key, and )(xe i

iπ  is the encoding function, 

which can be represented as; 

{ }))))))t((a(...(a((a)t(e iiiii
i

i
ππππ

11−=                     (2) 

The encoding function uses a previously created assignment table, which is; 

                  wta mii )())(( =π                                            (3) 

where 52Ζ∈w  representing the domain of 52 elements, and m represent the 

number of Ws between 0<m<10.   
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4.2   Decryption 

At the receiving end, the definitions 1, 2, and 3 are valid and applicable. When the 
ciphered message received, the deciphering process occurs and it can be represented 
as; 

                         ( )
( ){ 0for       

0for    1

>

=−=
icd

isPKi

i
il

i

i
t

π

                                               (4) 

where  )(xd i

iπ  is decoding function and represented as;  

{ })))))c(a((...a((a()c(d iiiii
i

i

12111 −−−= ππππ  

As in encoding function, decoding function also uses assignment table (equation 
(3)). Furthermore, the system has ability to break the plaintext down into several 
plaintexts and process different layering for each of them against Frequency Analysis 
attack.    

5   Conclusion 

In this paper, an alternative to the existing grid resource access and management 
methods is proposed. With the proposed approach, a confidential, autonomous, and 
dynamic infrastructure with efficient and cost-effective resource usage can be 
achieved. 

The employment of such decomposition based ciphering architecture with an 
intelligent reasoning will result in low resource usage and secure enough execution. 
Moreover, as fault tolerance is one of the inevitable requirements for the current 
distributed systems, the system allows the code or state recovery without using 
backups or large log files.  
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Abstract. In this paper we provide a formal definition of the component 
concept using the Heterogeneous Flow Systems Specification formalism 
(HFFS) a general system theory approach to the representation of timed 
systems. The HFFS formalism permits the development of hierarchical and 
modular components whose structure evolves over time. HFSS mobile 
components, a particular form of structural evolution, can represent mobile 
entities that exist in many systems like, for example, mobile communication 
devices and mobile software agents. The formal description is used to model a 
simple control application, based on mobile software agents, where a mobile 
hybrid component acts as a digital controller, allowing the runtime update of the 
control system of a vehicle. 

1   Introduction 

Dynamic stricture models offer a framework for accessing the performance of 
systems exhibiting an evolving structure. The Heterogeneous Flow System 
Specification (HFSS) [1] is a set theoretic representation of dynamic structure models 
that supports the construction of simulation components in a hierarchical and modular 
form. A particular form of structural adaptation requires the displacement of a 
component from one network component to another one. The HFSS formalism 
provides the semantics for fully supporting component migration.  

We present a formal description of components in the HFSS formalism. HFSS 
provides a unified representation of hybrid components with no distinction between 
mobile and non-mobile entities. 

Mobile Agents (MAs) are a software technology that involves the migration of 
software units, called agents, among computers through a network [4], [5], [6], [7], 
[9]. The network is usually the Internet or a mobile phone network. Mobile 
Components, due to structural similarity, offer a natural way to represent Mobile 
Agents, and provide a framework for modeling and testing agent applications [2].  

To exemplify the concepts introduced in the paper we present a simplified version 
of a cruise control system where vehicle velocity is set by a PI digital controller. 
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Considering that the vehicle is of difficult access and it is operated autonomously, the 
upgrade of the controller needs to be made remotely. In this case mobile agents may 
become a good solution. 

2   Heterogeneous Flow Models 

The Heterogeneous Flow System Specification (HFSS) is a formalism able to 
represent piecewise constant partial state components. It is based on the CFSS [6] 
and DEVS [10] formalisms, what makes it unified framework to represent hybrid 
systems. 

2.1   Basic Model 

A basic model in the Heterogeneous Flow System Specification (HFSS) is formally 
defined by 

HFSS = (X, Y, P, ρ, τ, q0, δ, Λc, λ) 
where 

X = Xc × Xd is the set of input values with 
Xc, the set of continuous input values 
Xd, the set of discrete input values 

Y = Yc × Yd is the set of output values with 
Yc, the set of continuous output values 
Yd, the set of discrete output values 

P is the set of partial states (p-states) 
ρ : P → R0

+
 is the time-to-input function 

τ : P → R0

+
 is the time-to-output function 

S = {(p, e)| p ∈ P, 0 ≤ e ≤ ν (p)} is the state set 
ν : P → R0

+
 is the time-to-transition function defined by 

ν (p) = min{ρ(p), τ(p)} 
s0 = (p0, e0) ∈ S, is the initial state 
δ : S × (Xc × Xd

φ) → S is the transition function, with 
 φ, the absence of value 

Xd
φ = Xd ∪ {φ} 

Λc: S → Yc is the continuous output function 
λ : P → Yd

φ is the partial discrete output function 
 

The discrete output function, Λd: S → Yd
φ, is defined by  

 λ(p) if e = τ(p) 
 Λd(p,e) =  
 φ if e < τ(p) 
 

The output function, Λ: S → Yc × Yd
φ is defined by 

 Λ(s) = (Λc(s), Λd(s)) 

In Fig. 1 are represented typical trajectories of a HFSS component. At time t0 the 
component is in state (p0, e0) and receives a discrete input xd0. 
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Fig. 1. HFSS trajectories 
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It changes then to the p-state p1 = δ((p0, e0), (xc0, xd0)). During the interval ρ(p1) no 
discrete input arrives, consequently, at time t1 = t0 + ρ(p1) the system changes to p-
state p2 = δ((p1, ρ(p1)), (xc1,φ)), where xc1 is the value of the continuous flow at time 
t1. At p-state p2 the time-to-input function is equal to the time-to-output function and 
the time to next transition is due at time t2 = t1 + ν(p2). During this interval there is no 
discrete flow but at the end of the interval the discrete value xd2 arrives. The 
component changes at time t2 to p-state p3 = δ((p2, ν(p2)), (xc2, xd2)). The time-to-
transition function is now equal to the time-to-input function. The component is 
schedule to change at time t3 = t2 + τ(p3). The component changes then to p-state s4 = 
δ((p3, τ(p3)), (xc3, φ)), for there is no discrete flow during this time interval. The 
continuous flow output is always defined. On the contrary the discrete flow is only 
non-null when the elapsed time equals the time-to-output function. In our example, 
this happens at times t2 and t3 where the discrete value is given by λ(p2) and λ(p3), 
respectively. 

2.2   HFSS Component 

HFSS components have two parts: the component model and the component model 
current state. The component model gives a description on how component state 
changes dynamically over time. This model also describes how the component state is 
mapped into output values. Formally, a HFSS component is defined by 

HFSS-COMPC = (MC, sC) 
where 

C is the component name 
MC = (X, Y, P, ρ, τ, s0, δ, Λc, λ) is the component model 
sC = (p, e) is the component current state, with 

p ∈ P, 0 ≤ e ≤ ν(p) 
 
Given this definition, each component has its own model, making it closer to 

instance based programming languages like SELF [8] rather to more classical class 
based languages like Java or C#. 

2.3   Network Model 

The HFSS formalism is based on the concept of dynamic Structure Network System 
[1] and it can represent models with an adaptable structure. One type of structural 
change supported by the HFSS formalism is the migration of a component between 
two models. This type of component is named here by Mobile Component (MC), and 
allows a faithful structural representation of many systems with mobile entities. The 
HFSS formalism can represent the key operations for enabling component mobility, 
namely: component removal, component transport and component restore. The 
formalism provides the necessary constructs to ensure that the current state (including 
the time spent in the current operation) of a removed component is stored so it can be 
latter correctly resumed. 

Formally, a Heterogeneous Flow System Specification Network is a 4-tuple 

HFNN = (XN, YN, η, Mη) 
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where 
N is the network name 
XN = XcN × XdN is the set of input values, with 

XcN the set of continuous input flow values 
XdN the set of discrete input flow values 

YN = YcN × YdN is the set of output values, with 
YcN the set of continuous output flow values 
YdN the set of discrete output flow values 

η is the name of the dynamic structure network executive 
Mη is the model of the executive η 

The model of the executive is a modified HFSS basic model, defined by 

Mη = (Xη, Yη, Pη, ρη, τη, s0,η, γ , Σ*, δη, Λcη, λη) 

where 
Σ* is the set of network structures 
γ : Pη → Σ* is the structure function 

The network structure Σj ∈ Σ*, corresponding to the p-state pj,η ∈ Pη, is given by the 
4-tuple 

Σj = γ(pj,η) = (Dj, {Mi,j}, {Ii,j}, {Zi,j}) 

where 
Dj is the set of component names associated with the executive p-state pj,η 
for all i ∈ Dj 

Mi,j is the model of component i 
for all i ∈ Dj ∪ {η, Ν} 

Ii,j is the set of components influencers of i 
for all i ∈ Dj ∪ {η} 

Zi,j is the input function of component i 
ZN,j is the network output function 

 

These variables are subject to the following constraints for every pj,η ∈ Pη: 
η ∉ Dj, N ∉ Dj, N ∉ IN,j 
Mi,j = (Xi,j, Yi,j, Pi, ρi, τ i, s0,i, δ i,j, Λci,j, λ i,j) is a basic HFSS model, for all i ∈ Dj, with 

 δi,j: Si × Xi,j → Pi 

Zi,j: 
k

×
∈Ii ,j

 Vk,j → Xi,j, for all i ∈ Dj ∪ {η} 

where 
 Yk,j if k ≠ N 
 Vk,j = 
 XN if k = N 

The network output function is given by 
ZN,j:

k IN,j
Yk,j YN
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Changes in network structure include the ability to change network composition 
and coupling. Structural changes are triggered by the transition function of the 
executive that can made arbitrary modifications in the network structure. 

3   Cruise Control 

The ability to update software systems while running is crucial in many applications. 
Some systems, like nuclear plants work in non-stop operation mode and software 
updates needs to be done while the system is running. The ability to make those 
updates remotely is mandatory in some applications, specially in software systems 
installed on devices operating in space, like satellites and probes, where upgrades 
needs to be done by radio communication. 

We describe the skeleton of the model of a control application that uses a mobile 
agent to upgrade the software control part of a remotely operating vehicle. 

3.1   Mobile Component 

The network S, depicted in Fig. 2 represents the whole system that includes the 
vehicle V and a digital controller π. When the network executive receives a mobile 
controller it replaces the current controller by the new one. The vehicle sends 
information about current velocity v and mass m. The controller receives the error v – 
vR, vehicle mass and a discrete flow stop signal , and sets vehicle thrust th. 

S 

ZV

V 

π 

η ZπZη 

((v−vR,m),stop)

th 

 

Fig. 2. Digital controller and vehicle 

The network S represented by  

HFNS = (XS, YS, η, Mη) 

where 
XS = {} × Π, where Π represents the set of models of PI digital controllers. 

Models of the set Π share the same partial states, making them compatible. 
YS = {} × {} 

The model of the executive is given by 

Mη = (Xη, Yη, Pη, ρη, τη, s0,η, γ , Σ*, δη, Λcη, λη) 



 A System Theory Approach 327 

where 
Xη = Xcη × Xdη = {} × Π  
Yη = Ycη × Ydη = {} × {} 

 Pη = {π0, π1, π2, …} 
 ρη(p) = τη(p) = ∞ 
 s0,η = (π0,0) 
 Σ* = {Σ0, Σ1, Σ2, …} 

To simplify the notation we use Mi as the model of controller πi instead of Mπ
i
. 

 γ(πi) = Σi = ( 
  {πi, V}, 
  {M i, MV}, 
  {Iη = {S}, IV = {πi}, Iπ

i
 = {V}, IS = { }} 

  {ZV((v, m), xd) = ((v − vR, m), xd), 
 ZS() = (φ, φ), 

Zη(x) = (x), 
 Zπ

i
(x) = (x) 

  } 
 ) 

Let us consider that the component to be update is named πi and is defined by Ci = 
(Mi, si). When the executive receives a new model Mj = (Xj, Yj, Pj, ρj, τ j, s0,j, δ j, Λcj, λ j) 
the transition function is defined by 

δη(πi, e, (φ, Mj)) = πj 

where the model of πj  is given by 

Mj

∂ = (Xj, Yj, Pj, ρj, τ j, si, δ j, Λcj, λ j) 

subject to the constraint si ∈ Sj 
 

The difference between the received model Mj and the update model Mj

∂ is on the 
initial state. The ability to use the state of the current model as the initial state of the 
new controller permits to avoid glitches in the control signal and to receive the input 
sample at the same instant, like if the controller was not updated. The state trajectories 
of the two components at the update time are depicted in Fig. 3. At time t a new 
controller model Mj arrives at the vehicle system. Vehicle executive replaces the 
current controller by the new one. The initial state of the new controller is the same as 
the current state of the removed one. The next transition of the new controller occurs 
at time t + ρi(pi) as it would be if the controller was not updated. This behavior is 
imposed by the fixed sampling rate assumption. 

The network S has an unbounded number of structures since its can accommodate 
an infinite number of different PI controllers. These controllers are not generally 
known in advance given that can be developed only after the system is operating. 
Given that the whole set of potential controllers are unknown in advance, traditional 
representations based on switching systems are not adequate. 
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Pi 

R0
+
 ρi(pi)

t 

0 

pi

ei

Xη (φ,(Xj,Yj,Pj,ρj,τj,sj,δj,Λcj,λj))

φ 

•

R0
+

Pj 

R0
+
 ρi(pi)

0 

pi

ei

πj 

πi 

pj

ρi(pj)

t+ρi(pi)  

Fig. 3. State trajectories of the controllers 

3.2   Vehicle Model 

The vehicle is represented by component V that exposes vehicle velocity and mass. A 
discrete event signal is also produced by detector Δ when fuel tank is empty. This 
information is used to stop the controller. The vehicle structure is depicted in Fig 4. 
Vehicle acceleration a depends on the thrust th set by the controller, drag proportional 
to vehicle velocity v, and vehicle mass m. Fuel consummation is proportional to 
thrust. The differential equations that model vehicle mass, velocity and position are 
solved by HFSS components specialized in numerical integration. 
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V

a

m

x

dm/dt

v dx/dt
th  

((v,m),stop)

m m0

 

Fig. 4. Vehicle dynamics 

The acceleration is given by  

a = d2x/dt2 = (th – kf dx/dt) / m 

Mass consummation is given by 

dm/dt = −km |th| 

The event detector Δ signals when the vehicle mass is equal to m0 corresponding to 
an empty fuel tank. This event will trigger a stop signal to the controller that will set 
the thrust to zero.  

3.3   The Controller Model 

The controller tries to keep vehicle velocity to a constant value.  Control actions 
depend on both velocity error and error integral, i.e., a PI digital controller type was 
chosen. The current controller has fixed values for the P and I parameters. Since the 
vehicle mass diminishes as fuel got consumed, the possibility to change the controller 
enables controller upgrade by more effective algorithms that can adjust PI parameters. 
The HFSS model of the initial PI digital controller π0 is given by 

Μ0 = (X, Y, P, ρ, τ, s0, δ, Λc, λ) 

where 
X = 2 × {stop} 

Y =  ×  

S = {run, out, stop} × 5 
ρ(phase, α, β, int, err−1, out) = α 
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τ(phase, α, β, int, err−1, out) = β 
s0 = ((run, 0, ∞, 0, 0, 0), 0) 
δ(((out, α, β, int, err−1, out), e), (_, stop)) = (stop, ∞, ∞, 0, 0, 0) 
δ(((run, α, β, int, err−1, out), e), ((err, m), φ))) = (out, ∞, 0, int1, err, out) 
with 

int1 = int + e × (err + err−1) / 2 
out = max{0, 10 err + 0.5 int1} 

δ(((out, α, β, int, err−1, out), e), _) = (run, 2, ∞, int, err−1, out) 
Λc((phase, α, β, int, err−1, out), e) = out 
λ (phase, α, β, int, err−1, out) = out 

 
We consider that sampling is done at a fixed rate of 2 s. However, the HFSS 
formalism permits to represent more flexible controllers based on variable rate 
sampling. Proportional and integral parameters have a value of 10 and 0.5, 
respectively. The minimum value of the control action is zero, meaning that not break 
action is applied. 

After studying vehicle performance it was decided to use an improved controller 
that adjusts proportional and integral parameters taking into consideration vehicle 
mass m. The new controller π∂ is described by 

π∂ = (X, Y, P, ρ, τ, s0

∂, δ∂, Λc, λ) 

where 
s0

∂ = sπ
0
 

with sπ
0
, the current state of controller π0 

δ∂(((out, α, β, int, err-1, out), e), (_, stop)) = (stop, ∞, ∞, 0, 0, 0) 
δ∂(((run, α, β, int, err−1, out), e), ((err, m), φ))) = (out, ∞, 0, int1, err, out) 
with 

int1 = int + e × (err + err−1) / 2 
out = max{0, m (10 err + 0.5 int1)/300} 

δ∂(((out, α, β, int, err−1, out), e), _) = (run, 2, ∞, int, err−1, out) 
 
In order to replace the controller by the new one without glitches we use the current 
state of controller π0 as the initial state of the new controller π∂.  

3.4   Simulation Results 

Simulation results for vehicle thrust, velocity and mass are presented in Fig. 5, Fig. 6 
and Fig. 7, respectively. Two curves represent vehicle thrust, velocity and mass under 
controllers π0 and π∂. The third curve represents vehicle behaviour when controller π∂ 
replaces controller π0 after 20 s of system operation. Numerical results were produced 
in the CAOSTALK modeling and simulation environment [1]. System parameters are 
set to: vR = 30 m/s, kf = 0.75 Kg/s, km = 0.02 Kg/N and m0 = 100 Kg. Values are 
illustrative and do not intend to represent an existing system. 
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As show in this example, HFSS components can model complex systems requiring 
a heterogeneous representation requiring differential equations, digital controllers and 
hybrid mobile agents. Agents can be used to provide component update as required in 
systems that cannot be easily accessed. 
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Fig. 5. Vehicle thrust 
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Fig. 6. Vehicle velocity 
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Fig. 7. Vehicle mass 

4   Conclusions 

The HFSS formalism can describe simulation components as independent units that 
can be built by hierarchical composition. This formalism can represent heterogeneous 
systems at both basic and network level. HFSS networks have a dynamic structure 
nature that can be modified by adding and removing components and 
interconnections. Structure adaptation includes the ability to represent mobile 
components, components that can migrate from one network to another while 
maintaining their state. Due to structural similarities, mobile components offer a 
framework for modeling and simulation of mobile agent systems. The simulation of a 
system that uses mobile agents to represent digital controllers was presented showing 
the HFSS formalism ability to model hybrid mobile systems. 
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Abstract. Mobile agents were introduced as a new design paradigm for
distributed systems. One advantage of mobile agents is to reduce network
traffic as compared to the client-server paradigm, simply by moving code
close to the data instead of moving large amount of data to the client.
Unfortunately, many mobile agent toolkit suffer from to simple migra-
tion techniques. Therefore, we argue in this paper for an new migration
technique that supports an adaptive decision on the code and data re-
location technique. We propose several techniques for code analysis and
alteration and present an algorithm to determine the optimal migration
strategy within this model under the assumption of full knowledge about
the application and network environment.

1 Introduction

Mobile agents have been introduced as a design paradigm for distributed ap-
plications. A mobile agent is a program that can migrate from host to host in
a network of heterogeneous computer systems and fulfill a task specified by its
owner. It works autonomously and communicates with other agents and host
systems. During the self-initiated migration, the agent carries its code and some
kind of execution state with it.

In current mobile agent toolkits (we restrict ourselves to Java toolkits in
the following), such as Jade [3] or Aglets [12], code and data relocation is im-
plemented in a fixed way, which might lead to poor migration performance in
specific application scenarios compared with client-server based approaches.

We have developed a new mobility model, named Kalong [6], which provides
fine-grained migration strategies. Whereas in other mobile agent toolkits, code
can only be transmitted either by pushing all classes to the destination agency
or loading all classes from a code server on demand, an agent in Kalong can
decide for each class how it should be transmitted. If the agent already knows
that a specific class will not be used at the next destination agency, the agent
opts against class transmission. Otherwise, if the class is very likely to be used
at the next agency, the agent can enforce to transmit it as part of the migration
process.

M.G. Hinchey et al. (Eds.): WRAC 2005, LNAI 3825, pp. 334–345, 2006.
c© Springer-Verlag Berlin Heidelberg 2006
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In [5] we have presented an approach based on static program analysis. In this
paper we present our approach to increase migration performance by enabling
agents to adapt their code and data relocation strategy during run-time based
on past experiences.

The remainder of this paper is organized as follows. Section 2 gives a short in-
troduction into current migration strategies found in actual mobile agent toolkits
and Kalong, our own mobility model, is described in section 3. We present some
techniques for migration optimization in section 4 and our migration planing
algorithm in section 5. An evaluation of that algorithm is shown in section 6.
Section 7 discusses related work and Section 8 concludes this paper.

2 Current Migration Strategies

In the following, we use the term migration strategy to describe the code and
data relocation strategy. Regarding data relocation, almost all current toolkits
implement a common strategy based on the following framework. When a mobile
agent decides to migrate to another host, the underlying agency (agent server)
is responsible to stop agent execution, serialize the agent (and all referenced
objects, i.e. the object closure), and to transfer the serialized agent (i.e. the
execution state) in one shot to the destination agency. The destination agency
receives and deserializes the agent and finally re-starts it by creating a new thread
and invoking a specific method. None of the available agent toolkits allows to
send only parts of the state or to download other parts, for example rarely used
data items, later.

Regarding code relocation, current toolkits implement different techniques,
which can be roughly classified into pull and push strategies. The first strategy
does not transmit any code along state transmission and uses Java’s built-in
technique to download classes on demand from the agent’s home agency. Pull
strategies are used for example in Grasshopper [2], and Jade [3].

The second class of code relocation strategies is named push strategies. The
code of an agent (together with the code of all referenced objects, i.e. the class
closure) is transmitted at once to the next destination. This strategy corresponds
to one important characteristics of mobile agents, that is autonomy: The agent
does not need a connection to its home agency after it has been started.

It is no surprise that neither pure push nor pure pull strategies lead to an opti-
mal network load and application performance in all cases. For example, pulling
classes during run-time from a distant home agency might be very expensive
(and unreliable) and pushing classes might cause superfluous class transmission,
since some classes (or parts of them) are never used.

3 The Kalong Mobility Model

The thesis of our work is that mobile agents suffer from fixed migration strategies
as they are provided in today’s agent toolkits. In our opinion, mobile agents
should not only be able to select a specific migration strategy from a catalog
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of available strategies before run-time but also able to continuously adapt this
strategy during run-time.

Our approach is based on a new mobility model, named Kalong, which is the
result of an in-depth analyzes of mobile agent’s drawbacks compared with client-
server approaches [6]. With Kalong, the migration strategy is not fixed but can
be programmed by the agent during run-time for each migration. Kalong differs
from current mobility models in three main aspects:

1. Kalong defines a new agent representation and new transmission units. In
our model, mobile agents not only consist of an object state and their code,
but have also an external state, which comprises of data items that are not
part of the object state. A mobile agent’s code is no longer transmitted in
form of classes or JAR files, but in a new transmission format that we call
code unit. A code unit comprises of at least one class or many classes, which
are supposed to migrate together.

2. Kalong defines two new agency types, namely a code server agency, from
which an agent can download code on demand, and a mirror agency, which
is an exact copy of an agent’s home agency. A mobile agent can define an
agency to be a code server or mirror and later release it again dynamically
during run-time.

3. Kalong defines a new class cache mechanism. Our class cache is able to avoid
transmission of identical classes used in different agents and can distinguish
between different versions of the same class. The class cache does not only
prevent unnecessary class download (pull) but also unnecessary class trans-
mission when used in push strategies.

This mobility model is implemented as an independent software component,
which can be considered as a virtual machine for agent migration. Basic com-
mands of this virtual machine are, for example, sending an agent’s state or
sending an agent’s code unit. Classes that were not sent during migration must
be loaded (pulled) on demand later. This may result in any kind of mixture of
push and pull strategies. Additionally, the migration strategy also defines, which
data items of the external state should be migrated to the next destination or, for
example, sent back to the agent’s home agency. In none of the available mobile
agent toolkits, an agent can influence the migration strategy during run-time. It
should be obvious that by using these primitives for state and code transmission,
it is possible to describe all migration strategies that we have introduced in the
previous section. A detailed description of Kalong can be found in [6].

4 Techniques for Migration Optimization

Current migration techniques transfer Java code either on the level of classes or
class packages (JAR files). We propose to transmit code on the level of methods,
because we learned from our experience of implementing small to medium mo-
bile agent-based applications that methods of one class may not have equal or
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similar execution probabilities. This section presents some techniques to iden-
tify methods with similar execution probabilities and afterwards alter the agents
code according to the preceding results.

4.1 Code Analysis

Static Analysis. All static analysis steps and the class split process described
in the next chapter use ByCAl (Byte Code Analyzer), a Java API developed at
Friedrich Schiller University to read, change, and write Java byte code.

The analysis process starts with with a control flow analysis followed by the
construction of an intra- and interprocedural control flow graph [15] which will
be the starting point for all further analysis steps. Afterwards a call graph is
built whose vertices represent methods with at least one entry point and whose
edges designate a possible method call. During our upcoming analysis steps each
vertex will be labeled with the execution probability of the method it represents
and each edge (a,b) with the probability that b is called by a. To construct this
call graph we use a class hierarchy analysis followed by a rapid type analysis to
reduce the number of edges in the graph. See [9, 7] for details. Later, based on
this call graph, we will determine the decomposition of the processed agent. We
now perform a data flow analysis [16] and value range propagation (VRP) [13]
to determine the execution probabilities of each branch following a conditional
jump. To execute a fast value range propagation the control flow graph is trans-
formed into static single assignment form [8]. For branches where VRP is not
able to determine any probability information, several heuristics are applied [1].

A static analysis has several drawbacks. The slow execution is a minor problem
as the analysis must only done once. The bigger problem is the reliability of
the results. The analysis only considers the agents classes but we think that
good execution probabilities can only be derive by analysing the agent and the
underlying agency. But this would significantly increase running time or would
not be possible at all due to hardware limitations (memory, etc.).

Dynamic Profiling. Because of the drawbacks of static analysis we imple-
mented another technique, namely dynamic profiling. We assume an agent (or,
in general, different agent instances of the same agent type) to execute the same
task frequently (not necessarily the same itinerary), so that we can infer from
class usage information gathered during one (sample) execution to succeeding
executions. Dynamic profiling is implemented by annotating Java byte code with
a counter for each class (a counter is a class variable), which is increased for every
method invocation. Because class variables are not part of the serialized object
closure, the agent must save these values before a migration to the object state.
After one agent execution, the agent knows how often which of its classes has
been used and it can decide on classes to push and those classes to be pulled
during a subsequent execution.

As a small example for dynamic profiling, consider the following setup. We
have an agent containing four different methods which are used during its tour.
The agent will visit three remote agencies calling method 1 on agency 1, method
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2 on agency 3 and method 3 on agency 3. Method 4 is called on every agency.
Additionally, depending on a random value, each method may be called once
more on each agency. Thus leads to at most two executions of each of those four
methods. In our test, the agent repeated this tour 500 times.

The results are shown below. Table 1 displays the absolute execution counter
values and Table 2 show the derived execution probabilities for each pair of
method and agency. As can be seen, execution probabilities of 1.0 match exactly
to the test parameter and all other values lie inside the range we defined for the
random value.

Table 1. Counter Values from Profiling

Agency 1 Agency 2 Agency 3

Method 1 666 162 128 956
Method 2 226 674 198 1098
Method 3 270 247 734 1251
Method 4 841 770 781 2392

Table 2. Derived Execution Probabilities

Agency 1 Agency 2 Agency 3

Method 1 1.0 0.324 0.256
Method 2 0.452 1.0 0.396
Method 3 0.54 0.494 1.0
Method 4 1.0 1.0 1.0

4.2 Class Splitting

Based on the execution probabilities derived from code analysis we split Java
classes on the level of byte code into smaller transmission units by a technique
named class splitting [10], which is done transparently to the agent and agent
programmer before an agent is started on its home agency. Class splitting is
based on standard techniques known from compiler construction and include
sophisticated program analyzes and static profiling techniques.

The general process of splitting a class file is rather simple, the problems are
hidden in the details. The process could be divided into two steps:

1. Moving original methods into a new class file and ensure that they are still
operational in this new environment. The new classes will be in the same
package as the original class.

2. Create a stub method replacing the original method. This stub has to behave
in exactly the same way as the original method i.e. it must have the same
number of arguments, same return type and same flags.
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Fig. 1. Class Splitting Example

As can be seen methods like startAgent or back which are only executed at
an agents home agency are moved into a new class thus reducing the size of the
original class. During the split process a stub method for each moved method
was added to the original class which will forward a request to the method to
the new class. Although this example shows Java source code class splitting will
be performed at byte code level.

As useful as class splitting seems to be in cases of monolithic large agents –
especially on networks with low bandwidth – there are several situations where
splitting should be omitted. As it is easy to see moving a method into a new class
is useless if the size of the stub method is large as the size of the original method.
Another situation occurs when a relatively small agent moves in a network with
high bandwidth. The speedup which can be achieved by making this agent even
smaller should be nearly not measurable. A third is the worst case when the
complete agent code is needed on each remote agency which means that after
splitting all classes are send to each remote agency. This would producing a
higher network load than the single original class because the sum of the class
sizes of the splitted agent is bigger than the size of the original class.

5 Migration Planing

After an agent’s code has been split and annotated, the agent is started and
migrates along a predefined itinerary. Actually, it is not compulsory for our
approach to have the complete itinerary predefined. However, the more destina-
tions are known in advance, the more accurate are the results of the migration
planner.

Our network performance model for planning the migration strategy consists
of an agent itinerary of m agencies L = {L1, . . . , Lm}, which have to be visited
in a fixed order and to execute some tasks on each server. We consider L1 to be
the home agency. We assume an agent to consist of u units of code {Uk}, each of
length Bk

c , k = 1, . . . , u. The agent carries a state of length Bstate and d external
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data items {Dk}, each of length Bk
d , k = 1 . . . , d. The usage probability of code

unit k on server Li is PUk
Li

and the usage probability of data item k on server
Li is PDk

Li
. Before an agent has been executed, all probabilities are assumed to

equal 0.5 and after each round, probabilities are set according to the results of
the dynamic profiling.

In case that a code unit must be loaded on demand, a request of length Bcr
(the same for all units Bk

c ) must be sent; in case of a missing data item, a request
of length Bdr must be sent. For each pair of servers we assume to know network
link throughput τ : L × L → R and link delay δ : L × L → R in advance. We
assume neither τ nor δ to be symmetric.

We define A as the set of all possible actions defined by Kalong. An action
is any basic command of Kalong, for example to send a code unit, send a data
item, send the agent state, send a request to load a data item or code unit, etc.
We define costs in terms of network load and processing time for each Kalong
action. For example, to send code unit Uk from server Li to server Lj produces
a network load of Bk

c bytes and takes τ(Li, Lj)−1Bk
c + δ(Li, Lj) sec.

We can also determine the costs for necessary code and data item downloading
operation. For example, if the agent is located at server Li at the moment and
data item Dk has to be loaded from the agent’s home agency with a specific
probability, this produces a network load of PDk

Li
(Bdr + Bk

d) bytes and takes
PDk

Li
((τ(Li, L1)−1Bdr + δ(Li, L1)) + (τ(L1, Li)−1Bk

d + δ(L1, Li))) sec.
A migration strategy MS : L → P(A) defines for each location Li the set of

actions {Ak} to be executed at this location in order to let the agent migrate to
Li+1.

To determine the costs (execution time) for a specific migration strategy MS,
we have to consider for all locations the time for migration TM (i.e. executing all
Kalong actions) and the time for executing the agent TE (which might include
necessary code and data downloading):

T (MS) =
∑
Li∈L

⎛
⎝ ∑

Aj∈MS(Li)

TM (Li, Aj) + TE(Li)

⎞
⎠

In order to determine the optimal migration strategy, i.e. the migration strat-
egy with minimal total cost, we map it to the problem of finding the shortest
path in a directed graph. Each node represents a state S, which is defined as
a mapping of code units and data items to servers, from which they can be
downloaded:

S = {{Uk} → P({Li}), {Dk} → Li}

Edges represent agent migrations (Kalong actions) or agent executions and
each edge can be weighted with the associated cost of either migration or exe-
cution. The process of constructing this graph is outlined in Fig. 2.

This algorithm is configured with information about the agent (itinerary, class
size, data item size, usage probability of each code unit and data item, etc.) and
information about the network environment (link bandwidth, and latency). The
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Fig. 2. Outline of the migration planning algorithm

output of the planning algorithm is a sequence of commands for the Kalong
virtual machine that leads to optimal migration behavior in terms of network
load and processing time.

6 Evaluation

We conducted several experiments with the migration planer and we will present
one of the most interesting ones. We call this scenario Nomad User as the agent
is started from a mobile device with a slow and unstable connection to the
network. After leaving its home agency the agent will visit four remote agencies
which reside in standard LAN. Bandwidth is 100.0 MBit/sec, latency 0.5 sec
and availability 85.0 % for all but the connections to the home agency. Those
connections have a latency of 5.5 sec and availability is 5.0 %. For the usage
probabilities of the code units take a look at table 3. The agent’s size and that
of each code unit is 10.0 KB.

In this scenario the installation of a code server or mirror should increase
round trip time because loading classes from any server but the home agency
will be much faster than pulling them from home. And we wanted to guide the
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Table 3. Usage Probabilities of Code Units

Home Agency 2 Agency 3 Agency 4 Agency 5 Agency 6

CodeUnit 1 100.0 0.0 0.0 0.0 0.0 100.0
CodeUnit 2 0.0 100.0 0.0 0.0 0.0 100.0
CodeUnit 3 0.0 0.0 100.0 0.0 0.0 100.0
CodeUnit 4 0.0 0.0 0.0 100.0 0.0 100.0
CodeUnit 5 0.0 0.0 0.0 0.0 100.0 100.0

Fig. 3. Nomad User Example

planer in the decision which agency should become code server/mirror with the
fact that all code units are needed at the last agency.

Figure 3 shows the fastest sequence of migration actions for this scenario.
The two most important points to notice are the installation of a code server

and the location of that code server. The experiment led to exactly that kind
of migration strategy we had in mind in advance. A utilization of a code server
yielded to a faster round trip time and the location was chosen to be the agency
needing the most code units.

A simple Push strategy took 24.0 sec. Compared to that result we are 44%
faster. The Pull strategy led to a roundtrip time of 1139.44 sec, what is an
utterly devastating result. This is caused by the fact that each code unit must
be loaded from home agency via that very unstable and slow connection. The
fastest strategy using a code server on agency 6 is thus 98% faster.

Other migration plans considered the installation of more than one code server
and/or mirror, but the overall running time does not benefit from such a step.
The tour time for such plans is bigger than 14 sec.
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7 Related Work

To our knowledge the only paper dealing with class file splitting as a way to
reduce network load of mobile code is by Krintz et al. [11]. However there are
some differences between their and our approach. First of all they are dealing
with Java Applets which are a special kind of mobile code. An applet is send
to a remote server, executed there and dies afterwards. According to the list of
method types we gave in section 3 an applet only contains methods of type 2
and 4 which greatly limits the number of optimization strategies compared to
mobile agents.

The main goal of the authors is to reduce the startup time of an application
especially if the application is an applet which is started after all classes have
been transfered to the remote server. To achieve this goal the authors propose a
technique which moves methods which are not used during the startup phase or
which are rarely used to a new class. This new class is then loaded by another
thread while the main class is already in use. Compared to our approach they
only split classes into two parts - a hot one for the first used methods and a
second for the later on used methods, whereas we create several cold parts (or
split classes as we call these parts). The disadvantage of the Krintz approach
is that if only on rarely used method is needed the complete cold part must be
transfered. On the other hand, in our approach each new class file creates an
overhead to the total size of all new class files. Thus, moving each method into
a single class would also be ineffective.

An interesting point in their paper is class prefetching which is used to reduce
delays if a cold class has to be loaded. They examine the control-flow of a class
and determine the point at which they know for certain that class x is needed
sooner or later. They start a new thread at this point to load class x in paral-
lel. The Kalong mobility model also allows class prefetching but unfortunately,
prefetching statements increase code size so additional research is necessary if
this technique can be used to optimize our approach.

Although Krintz’ paper describes class splitting only on source code level, we
have to assume that they also work with byte code. Otherwise they could not
determine when it is beneficial to split a class file since the relevant file size is
the size of the class file which contains Java byte code and not the size of the
source code file. However, their paper mainly focuses on the prefetching process
and describes the splitting process only concise. Thus, we are unable to compare
their splitting process with ours.

To summarize, the Krintz approach allows a faster starting and response time,
but they do not optimize for network bandwidth. At last, even more bytes must
be transfered, because the sum of the size of all new class files is higher than the
original size and the added statements for prefetching also increase the size.

8 Conclusion and Outlook

In this paper we have presented our approach for adaptive mobile agents in or-
der to increase migration performance. We have presented a new mobility model,
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Kalong, which enables mobile agents to adapt their migration strategy during
run-time. We have presented an algorithm to determine a migration strategy
under the assumption of full knowledge of the itinerary, network parameters,
and execution probabilities of the agents. These execution probabilities are de-
termined from dynamic profiling, which is implemented by annotating Java byte
code before agents’ execution.

At the moment, we are conducting experiments in wide-area network to evalu-
ate the quality of our approach. To forecast network performance we are working
on techniques comparable to [14] in combination with our domain manager con-
cept [4] implemented in Tracy.

In the longer run, we work on the integration of these concepts into a frame-
work for adaptive migration of mobile agents, including an adaptive decision
between remote communication and migration.
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Abstract. Goddard Space Flight Center (GSFC) is working on developing new 
kinds of robotic structures capable of: goal-oriented motion, changing its form 
to optimize its function, adapting to new environmental demands, and/or 
repairing itself. A series of increasingly complex roving shapes leading up to 
the tetrahedron were considered. This paper addresses this innovative use of 
multi agent system technology that is being used to achieve the desired 
autonomous behaviors. 

1   Introduction 

ANTS (Autonomous Nano Technology Swarm) SMART (Super Miniaturized 
Addressable Reconfigurable Technology) architectures were initiated at the Goddard 
Space Flight Center (GSFC) to develop new kinds of robotic structures capable of:  
goal-oriented motion, changing its form to optimize its function, adapting to new 
environmental demands, and/or repairing itself.   

To begin to explore the possibilities of these concepts and the possible application 
of multi-agent control, a series of increasingly complex roving shapes leading up to 
the tetrahedron were considered. The goal is to have the structure move from an initial 
location to a specified goal location. The tetrahedron has six struts that can be 
reversibly deployed or stowed. More complex structures will be formed by 
interconnecting these reconfigurable tetrahedra, making structures that are scalable 
and massively parallel systems.  The full functionality of such a complex system 
requires fully autonomous operations [1]. 

As illustrated in Figure 1, the tetrahedron (tet) has four nodes and six expandable 
struts.  It “walks” by extending certain struts, changing its center of gravity and 
“falling” in the desired direction.  Currently, the basic structure, the tetrahedron, is 
being modeled as a cooperating/collaborating 4-agent system with an agent located on 
each node of the tet. (An agent, in this context, is an intelligent autonomous process 
capable of deliberative and reactive behaviors as well as social and introspective 
behaviors.)  The desired result is the realization of a truly autonomous tetrahedron 
structure. 
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This paper will address this innovative use of multi-agent system technology that 
is being used to achieve the desired autonomous behaviors as well as the increasingly 
complex staged approach in the development of the multi-agent tet. 

 

Fig. 1. Structure of a tet, and possible configuration of a fallen tet 

2   Problem 

This on-going research project centers on designing a constrained multi-agent system 
that efficiently and effectively allows a simple tetrahedral rover (a rover consisting of 
a single tetrahedron) to move autonomously on a surface and maneuver past obstacles 
it may encounter (such as a rock, wall, incline, cliff, or ceiling) in order to achieve a 
specified goal.  Each simple tetrahedral rover will be autonomously controlled by a 
group of four agents acting in a coordinating and collaborative fashion.  The agents, 
located at the four corners, or “nodes,” of the tetrahedron, will control motion by 
specifying the extension of the struts that are connected to the nodes of the 
tetrahedron.  The structs, connecting the agents, gives rise to the “constrained” multi-
agent system.  A design objective is that the struts must be extended in a way that 
maximizes distance covered while minimizing power usage.  The agents also must be 
able to evaluate and maneuver past obstacles they may encounter as they travel to the 
goal.   

3   Approach 

In order to achieve the overall objective of realizing a fully autonomous simple 
tetrahedral walker, a phased approach is being followed.  For this phasing, the simple 
tetrahedral walker was considered through four increasingly complex systems, as 
illustrated in Figure 2:  the node (a), the inchworm (b), the triangle (c) and the 
tetrahedron (d). 

Underlying Hypothesis:  We have identified two types of emergence:  emergence of 
autonomous behaviors in a simple tetrahedral structure arising from the progressive 
composition of autonomous behaviors realized by going systematically from a dot to 
an inchworm to a triangle to the simple tetrahedron.  This is the major type of 
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emergence hoped for in our current research.  The emergent autonomous behaviors of 
more complex tetrahedral structures, realized  from the composition of  the individual 
autonomous behaviors of the basic building blocks (the tetrahedral), is the second 
type of emergence (not addressed in this paper).  Please note that the “emergence” of 
more complex autonomous behaviors from simpler autonomous behaviors (both at the 
simple and complex structures levels) is a major hypothesis of the current research. 

 

Fig. 2. (a) node, (b) inchworm, (c)  triangle, (d) tetrahedron 

4   Components of the Tet-Walker 

The basic idea that underlies our current work is that if the progressively more-
complex behaviors of the  sub-structures of the tetrahedron are  simulated and then 
analyzed   then an analyses of the simulation code will help in  understanding the 
“reasoning “ that is being followed.  This reasoning will be embedded in the agents 
associated with the tet-walker. 

Before we proceed with a discussion of the substructures associated with the 
simple Tet-walker we define what we mean by “agent”. 

Agent - “a physical or virtual entity which is capable of acting in an 
environment, which can communicate directly with other agents, which is 
driven by a set of tendencies (in the form of individual objectives or of a 
satisfaction/survival function which it tries to optimize), which posses 
resources of its own, which is capable of perceiving its environment (but to 
a limited extent), which has only a partial representation of its environment 
(and perhaps none at all), which possesses skills and can offer services, 



 Agent Modeling of Tetrahedron-Based Structures 349 

which may be able to reproduce itself, whose behavior tends towards 
satisfying its objectives, taking account of the resources and skills available 
to it and depending on its perception, its representations and the 
communications it receives.” [2] 

4.1   The Dot 

The most basic autonomous, mission-capable unit of the tetrahedron is a node (dot).  
To begin to develop the AI for the system, it is important to be able to design AI for 
the most basic part, a single node.  In this scenario the capabilities of linear motion in 
a one-dimensional environment are assumed.  Also assumed is that the agent can 
accept the datum of the goal (target destination, in this case specified by an x 
coordinate).  Through top-down design the AI for the agent was then designed so that 
its necessary abilities could be established.  Next, the program was created through 
bottom-up system design.  The program was divided into two classes: the 
visualization/realization, and the AI.  The visualization/realization class, hereafter 
referred to as the VR, simulated the physical laws of the environment and displayed 
an image of the scenario.  The VR also acted as the messenger to the user accepting 
the goal location, and passed this information on to the AI as well as relayed the 
“thoughts” of the AI to the screen.  The AI class evaluated the mission and 
commanded the VR class to move the dot in a certain manner.  Both classes 
communicated, but only in methods that would approximate the assumed abilities of 
the rover.  To evaluate the success of the program, its ability to reach a point within a 
specified margin of error of a target destination was evaluated. 

The AI for the dot is relatively simple.  Initially the dot knows the location of itself 
and the goal, as defined by x coordinates.  The dot then identifies which side of itself 
the goal is on (or if it is at the goal) and takes one step in that direction. It then 
receives an update of its location.  It uses this information to check if it has reached 
the goal (or is within a certain radius of it), choose a direction, and move.  This loop is 
repeated until the node decides it has reached the goal. 

This combination of traits makes the dot a simple agent with one exception, it lacks 
the ability to communicate with other agents (this is accepted though due to the lack 
of other agents in the dot’s environment).  It acts in the environment by moving along 
the line.  It is driven by the goal of reaching a particular point.  It possesses resources 
in the form of a method used to interpret goal location and output direction of motion.  
It is capable of perceiving its environment by accepting the location of the goal.  Its 
behavior tends towards satisfying its objective of reaching the goal. 

4.2   The Inchworm 

The next logical step determined important enough to implement was the inchworm.  
This is the name given to two nodes connected by a strut.  This problem begins to 
address some of the more difficult problems of the tetrahedron.  These problems 
involve strut-based motion and communication between agents, particularly 
concerning agreement on strut control.  The objective of the inchworm is to get either 
of its nodes within a specified distance; thereby making the target a circle.  In this 
case it was assumed that:  
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a) motion is performed on a 2d surface, 
b)   circular obstacles are placed at random on that plane such that they are 

not on top of the inchworm or too close to the target destination at 
the beginning of the simulation, 

c)    contact with an obstacle results in mission failure, 
d)   either node of the inchworm can  increase friction such that the strut 

can be extended without that node slipping, 
e)  both agents can receive a target destination (specified by x and y 

coordinates), 
f)    a complete view of the surroundings is available to both agents, 
g)   the mission is considered successful if either one of the nodes is within 

a specified radius of the goal, 
h)  both nodes have the ability to order strut extension or contraction, i) the 

nodes can communicate with each other, and 
j)   both nodes know the maximum and minimum lengths of the strut.  

 
This program also used the VR and AI classes.  The VR of this case differed from 

the single node in that it also communicated conversations of the agents to the user.  
To evaluate success of the system, goal-completion ability’s dependency on the 
amount of obstacles was reviewed.  Through multiple simulations (obstacles being 
placed at random), capabilities of the inchworm were evaluated. 

The AI becomes far more complex in the Inchworm.  Each inchworm node is 
“born” with knowledge of the minimum and maximum lengths of the strut connecting 
the two nodes, the length of one “step” (a unit used throughout loops in the program 
to increase speed and decrease accuracy, approaching 0, in this case, is equal to 
0.0007), the three dimensional location of itself, the identity of the other agent, the 
identity of the virtual universe which constitutes its environment, the location of the 
goal, and an ID number used to identify itself in output.  After all these variables have 
been initialized, it checks to see if it is closest to the goal (it gets the location of the 
other node by asking, it does not store this information.).  If it is closest it sets the 
value of a boolean (true/false) variable “front” to true, and proceeds to control the 
motion.  If it is not true, it sets the value to false and waits for further communication.  
If they are both equally close to the goal, the node with an ID number of 1 sets front 
to true and continues.  The front node then checks to see if the goal has been reached 
by itself (as defined by the node being within a certain radius of the node) and 
requests that the other node does the same.  If either node determines the goal has 
been reached, that node stops reasoning and tells the other to stop also.  Then, a loop 
begins.  The following sequence of steps is repeated until it is determined that the 
node is either at the goal, or no longer closest to the goal:  First, the node checks 
whether it needs to align itself with the goal (if the goal is on the same line as the 
nodes) and proceeds to do so in the most efficient method if necessary.  This step is 
repeated in order to allow a moving goal.  The environment then updates its position.  
It then takes a step towards the goal (the back node remains stationary while the strut 
extends to the maximum (or if the node is close to the goal, some intermediate) 
length, after that, the strut contracts while the front node remains stationary.  The 
positions of the nodes are then updated.  Next, the node checks to see if it is still the 
front node.  If it is not, it relinquishes control, and the other node begins this loop.  If 
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it is, it proceeds.  Finally the node checks to see if the goal has been reached, and tells 
the other node to do the same. 

4.3   The Triangle 

In order to better understand the problems of reactive motion and node adaptability in 
tumbling motion, a triangular configuration has been considered. Three agents located 
on the corners control the triangle’s motion by changing the lengths of the struts 
connected to the corner on which they are located.  The triangle moves in a linear 
manner, reaching a target along the line defined by an x-coordinate.  The triangle 
moves by extending struts so that its center of mass passed the front base node (see 
Figure 3). 

 

Fig. 3. Movement of the triangle 

An important goal for the triangle was not only for the system to successfully 
move, but also for it to do so in the most efficient way possible.  In this scenario, 
efficiency is measured by absolute value of change in length in all struts during 
motion.  Initially, an equation was determined to find the most efficient motion.  This 
proved too difficult to solve analytically, so instead, the simulation was run with all 
different possible ratios of extensions for each of the sides relative to each other.  The 
data was then graphed in a three-dimensional graphing program developed for this 
data.  It was extremely clear from this experiment that the most efficient motion 
involved maximum extension of the “far-top” strut, minimum but positive extension 
of the “top-close” strut, and negative extension of the base strut.  There were 
limitations to this approach.  For example, sometimes it is possible that a strut will 
contract and extend at different times, particularly when the first step is taken from an 
equilateral triangle but the following ones are taken from a fallen state.  Despite these 
concerns, the agents were originally designed from this data. 

Later, these issues were revisited and in order to combat these problems, the purely 
mathematical approach was reconsidered and proved to be solvable through 
development of a short program.  In this analysis the length of one side (the base) was 
kept constant to eliminate inconsistencies in size.  The data was then graphed in the 
same program and it was found that a 2.02:1.01:1 ratio of lengths would be most 
efficient for motion an infinitely long flat surface.  In fact the extension should be 
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slightly more, because that is approximately an equilibrium position, not one that 
would induce falling.  This data is not extremely precise (it is accurate to the 0.05), as 
it was just a development towards the tetrahedron. 

Soon after this approach gave such helpful results, the triangle program was turned 
on its head, well, at least slightly tilted.  It was determined that a useful ability for the 
triangle to have, and a good development towards the tetrahedral walker would be the 
ability to handle inclines.  The mathematical analysis was then expanded to not just 
consider various length combinations, but also various angles.  The most efficient 
motions at each of 16 different angles were then isolated.  Sixth degree polynomials 
were fitted to the lengths of each side and given to the agents to use in controlling the 
triangle. 

In this model, each agent is identical in processes followed, but differ in state of 
knowledge.  The triangle nodes are instantiated with knowledge of the minimum and 
maximum lengths of the struts, the length of one “step”, the three dimensional 
location of itself, the identity of the other agents, the identity of the virtual universe, 
the location of the goal, the angle of the incline, and an ID number used to identify 
itself in output.  Once instantiated, the node proceeds to check if it has reached the 
goal.  It then calculates it’s relative position to the other nodes and the goal.  It is 
either: “top” (y coordinate > 0), “far” (y = 0, distance to goal is greater than “close”), 
“close” (y = 0, distance to goal is less than “far”).  After this, it repeats the following 
steps until the value of “found” is true.  If it is “far,” it tells the base strut to contract 
to the smallest length allowed.  If the agent is on top, it tells the strut connecting itself 
to “far” to extend until it reaches a value specified by the previously determined 
equation (using the angle as input).  If it is “far,” it tells the strut going to the top node 
to move towards the value given by its equation.  After executing its extension, the 
agent requests an update of its location from the environment and then uses that to 
determine again its relative position.  Once the goal is reached, this loop ends and by 
communication between nodes is ended for all other agents; the mission is deemed 
successful. 

4.4   The Tetrahedron 

Initially the tetrahedron was considered without obstacles or inclines (roving on a flat 
surface towards an (x,z) goal).  In this case each agent followed the following logic: 

First, the node checks to see if it is part of the base (if the y-value of its location is 
equal to zero).  If this condition is satisfied, the agent goes on to see which base node it 
is.  If its location is farthest from the goal, then it tells the strut connecting itself to the 
top node, to extend to a set length (between two and three times the minimum strut 
extension).  Also, it tells the two other struts it is connected to, to contract to the 
minimum length for a strut.  If two nodes are both equidistant and farthest from the goal, 
one is selected at random to extend to this length, the other acts like the following 
nodes.  If a node satisfies the first condition, but not the second, it informs the strut that 
connects itself to the top node to extend to a different set value (just a little more than 
the minimum).  The extension is done in a step-based manner and is halted when the tet 
falls over (the top node is constantly checking to see if the tet has fallen over, or, 
reached the goal).  Positions are reevaluated upon falling, motion is stopped when the 
top node has reached the goal.  This motion succeeded in reaching the goal. 
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5   Conclusion 

This paper has presented a brief overview of the current work which is going on in the 
attempt to realize an autonomous simple tet-walker.  Much more needs to be done. 

In the immediate future there are plans for tests to be run that are similar to those 
run on the triangle.  This will output the best motion for the tet both on flat ground 
and inclines.  Using these results the base nodes will be able to handle inclines and 
react appropriately while the top node manages map making and path planning. 
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Abstract. Congestion control in MAS is addressed through a network of agents 
communicating with each other, for issuing and responding to assistance re-
quests. The network state is analyzed as a particular qualitative game, called 
Game of Deterrence. A congestion avoidance algorithm is proposed, on the ba-
sis of the game solutions. The relation between the type of game reflecting the 
structure of the agent network, and the occurrence of congestion is then ana-
lyzed, highlighting the impact of the network size, and leading to the alternative 
of either implementing the algorithm, or breaking down the global network in 
regional networks inside which the congestion occurrence probability is low. 
The method is then extended to the dynamic case through an example showing 
existence of cycles.  

1   Introduction 

Multi-agent systems can be considered as a paradigm for representing workflow is-
sues in a given organization. Workflow control, and more specifically congestion 
avoidance, is of utmost importance, since the latter is the basis for rationalizing the 
organization. Now, congestion avoidance is quite a complex and multi-facet problem. 
In previous papers [1,2,4,10,11] we have followed a general approach based on the 
generic principle of task limitation within the organizational network. More specifi-
cally, modeling the organizational network as a two-player game of deterrence, we 
have developed a congestion control algorithm triggered by the game solutions. The 
case of fuzzy games [10] has been considered, and some specific properties concern-
ing particular graphs associated with the game of deterrence have been shown. More-
over, a categorization of the states of the game has been made on the basis of whether 
they would or would not lead to congestion at the next state [11]. 

The present paper, will extend the previous results by introducing dynamic games 
of deterrence, in order to look for long term solutions. By long term solutions, we 
here mean solutions that are satisficing in the long run, that is solutions which enable 
to avoid congestion over a given set of time. 

More precisely, we shall introduce multi-stage games of deterrence, in which evo-
lution of the state over time defines a trajectory, while the game target is a sub-space 
of the game space. 
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Congestion is then defined with respect to a game target and forbidden transitions 
from state to state. 

In section 2, we shall recall the main definitions and properties of static games of 
deterrence. In section 3 we shall analyze as an example, how the problem of informa-
tion sharing between two agents can be modeled through games of deterrence. Section 
4 will first introduce the basic definitions and properties of dynamic games of deter-
rence, before extending the case study of section 2 to a three-agent multi-stage game 
of deterrence. Section 5 will consider the congestion control problem can be dealt 
with through games of deterrence. In particular, an analysis of the game will be made 
in accordance with the risk of congestion occurrence. 

Last, section 6 will apply the concepts and properties introduced to long run con-
gestion control, through developing an example. 

2   Static Games of Deterrence 

2.1   The Purpose of Games of Deterrence 

While standard Game Theory has dramatically progressed in the study of equilibria 
refinements, thus trying to solve the problem of the multiplicity of equilibria, many 
situations occur where one is unable to precisely assess the states of the world corre-
sponding to the selection of  a particular strategy by each player. The literature offers 
various approaches to deal with this problem. Most of them amount to ordering the 
outcomes either directly, like in the usual ordinal games, or indirectly, through map-
ping the set of possible outcomes corresponding to a given state of the world, with a 
probability distribution.  

Games of deterrence propose an alternative approach, based on the observation, 
that even if decision makers are unable to precisely assess their outcomes, more often 
than not, they are still able to say whether a given state of the world  is acceptable  
(for them and / or for the other players) or not. In other words, many decision situa-
tions can be represented by analyzing states of the world with regard to a predefined 
threshold.  

If a state of the world is considered being beyond the threshold (i.e. acceptable), 
the associated outcome will be 1, while on the opposite, if the state of the world is 
considered being beside the threshold (i.e; unacceptable), the associated outcome will 
be 0. This amounts to a coarse ordering of the state space. 

So games of deterrence will look only for satisficing equilibria, that is, equilibria 
such that each player may reach an acceptable outcome. Conversely, this approach 
will aim as much as possible at deleting strategies that do not enable the player who 
selects them to get an acceptable outcome: Therefore, the term deterrence, and the 
fact that what is sought in these games is playable strategies.  

2.2   Theoretical Model 

We here recall the basic definitions and properties presented in [10] 
Let R and C be two players with respective strategic sets SR  

(card SR = n) and SC (card SC = p).  
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We shall consider finite bi-matrix games (SR, SC, A, B,S) in normal form where 
possible outcomes are taken from the set {0,1}. More precisely, for any strategic pair 
(r,c) ∈ SRxSC,  A(r,c) =1 defines an acceptable outcome for the player R,  

while A(r,c) =0 is not. Similar definitions apply by analogy to player C with  
matrix B. 

A strategy r of Row is said to be safe iff c∈SC, A(r,c)=1. 
A non-safe strategy is said to be dangerous. 
Let J(r) be an index called index of positive playability, such that: 
If r is safe then J(r) =1 
If not,  

  J(r) = ∏ [1-(1-A(r,c))J(c)](1- C ) R  

          C∈ SC
 

With R= ∏ (1- J(r) ) ;       C = ∏ (1- J(c) ) 
                      r∈ SR                                          

C∈ SC 

If J(r) = 1, strategy r ∈ SR is said to be positively playable. 
If there are no positively playable strategies in SR, that is  (r) =1, strategy r ∈ SR is 

said to be playable by default.  
Similar definitions apply by analogy to strategies c of C . 
A strategy s ∈ S = SR∈ SC is playable iff it is either positively playable or playable 

by default. 
The system S of all J(r), r∈ SR, and J(c), c ∈ SC, is called the playability system of 

the game. 
A solution of S is a consistent set 

  { J (r1), J (r2),..., J (rn), J (c1), J (c2)...., J (cp)}.  

In the general case, there is no uniqueness of the solution. 
 
A strategic pair (r,c) ∈SRxSC is said to be an equilibrium of this game if both 

strategies are playable for some solution of the playability system. 
 
Given a strategic pair (r,c) ∈SRxSC, r is termed  deterrent strategy vis-à-vis c iff: 

(1) r is playable 
(2) B(r,c) =0 
(3) ci ∈ SC, such that J(ci)= 1. 

It has been shown [6] that a strategy c∈SC is playable iff there is no strategy r ∈ SR 
deterrent vis-à-vis c. Thus, the study of deterrence properties amounts to analyzing 
the strategies playability properties. 

2.3   Graphs of Deterrence 

Given a game of deterrence (SR, SC, A, B,S), we shall call graph of deterrence, a bi-
partite graph G on SRxSC such that, given (r,c) ∈ SR x SC, there is an arc of origin r 
(resp. c) and extremity c (resp. r), iff  B(r,c) =0 (resp. A(r,c)=0).   
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Solving the playability system S amounts to determining playabilities of the graph 
vertices. Since a graph can be decomposed into paths and circuits, we shall call: 

 
-  R-path (resp. C-path) a path the root of which is an element of SR

 (resp. of SC);
 

-  Primary circuit, a circuit such that none of its vertices has an ancestor that does 
not belong itself to a circuit; 

-β-graph, a graph, that includes neither an R-path nor an C-path. 

  
It is shown (ibid) that: 

(i) if G is an R-path (resp. C-path), the only positively playable strategy for R 
(resp. C) is the root, while all strategies of C (resp. of R) are playable by default; 

(ii) if G is a primary circuit, all strategies of both players are playable by default; 

Moreover, it is shown (ibid) that through appropriate cuts, it is always possible to 
break down the graph of deterrence into connected parts, each one being an R-path, 
an C-path, or a β-graph. Hence, depending on the presence of these elementary com-
ponents in the graph, one can distinguish 7 types of games : type R, type C, type β, 
type R-C, type R-β, type C-β, type R-C-β. 

(1) if G is an R-path, the only positively playable strategy for R is the root, while 
all strategies of C are playable by default; 

(2) if G is a primary circuit, all strategies of both players are playable by default; 
(3) if G is a  β-graph, a solution of S satisfies: 

      (i) for any strategy s0,  

J(s0) = ¬[ 
R
∨

E
] ∧ ∀ s∈N(s0): J(s) ∧ ∀s’∈N'(s0): [¬J(s')]  

where N(s0)  (resp. N'(s0)) is the set of the first strategies met when following  

G  backward from s0, and belonging to the same strategic set as s0 (resp. to the other); 

      (ii) on a path, the vertices positive playability is determined by the parity of 
their distance to the first strategy met when following G backwards ; 

      (iii) each player has at least one non positively playable strategy. 

This typology leads in turn to the Classification Theorem (ibid):  

(1) Given a game of deterrence, its playability system’s solution set is not empty. 
(2) The game type defines the solution set. 

It follows from (1) that every game of deterrence has an equilibrium, but the above 
shows that this equilibrium may not be unique. 

With a small number of additional concepts, all previous definitions and results are 
extended to the case of N-player games [8]. 

We shall illustrate these concepts by an elementary example, in which we shall 
show the relation between a standard game and games of deterrence.  

3   Example 1 

Rupert and Charlene who work for the same company, are involved in a supposedly 
collaborative process during which they may exchange information. 
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Charlene 

Providing information takes time and has therefore a cost (data mining, synthesis, 
shaping, transmission etc.). We shall first assume that the aggregate cost of providing 
a unit of information is 2, while the gain obtained from collecting this information is 
3. So if there is no doubt that each agent is willing to get as much information as pos-
sible, he may not be willing to provide his / her colleague with the information re-
quested by the latter. This might be the case when the net value of the information 
exchange is negative for him, i.e. when he provides his colleague with information 
while not getting anything himself.  

Information exchange (when existing) is done according to the following process. 
First, one agent sends his colleague a request for information. Second, the recipient 
decides whether to answer positively or not. In the first case, we shall say that the 
agent commits. 

3.1   Standard Game  

Requests and commitments generate four possible attitudes, which may be considered 
as strategies in a matrix game:  

 - requests and commits (R∧C) 
 - requests and does not commit (R ∧¬C) 

- does not request and commits (¬R∧C) 
- does not request and does not commit (¬R∧¬C) 

On the basis of the previous assumptions the payoff matrix could be then given 
here under: 

 
 
 

 c1 = R ∧C c2=R ∧¬C c3 =¬R ∧C c4= ¬R ∧¬C 
r1 =R ∧C (1,1) (-2,3) (3,-2) (0,0) 
r2 =R ∧¬C (3,-2) (0,0) (3,-2) (0,0) 
r3 =¬R ∧C (-2,3) (-2,3) (0,0) (0,0) 
r4=¬R ∧¬C (0,0) (0,0) (0,0) (0,0) 

 
If Rupert and Charlene are to make decisions about providing or requesting infor-

mation, they can act rationally through the standard quantitative game approach, using 
the above payoff matrix as the matrix of a Nash game. 

In this game, strategies r3, r4 and strategies c3, c4 are strictly dominated, which im-
plies that the game has the same solution set than the 2x2 game comprised of the first 
two strategies of Rupert, and the first two strategies of Charlene. 

The reduced game is nothing but a Prisoner’s Dilemma, with (r2,c2) as unique Nash 
equilibrium. The conclusion is obvious : each agent wants the other to provide him / 
her with information, but simultaneously refuses to commit to the other’s request : a 
typical non –cooperative attitude. 

Rupert 
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Charlene 

3.2   Game of Deterrence 

Let us now consider a variation of the game here above, in which Rupert considers a 
negative outcome unacceptable, while Charlene considers a non-strictly positive out-
come unacceptable. 

In other words, the states of the world that a player considers unacceptable are the 
following: 

For Rupert, it is unacceptable to simultaneously request and commit, when Char-
lene requests as well, but does not commit 

For Charlene, it is unacceptable not to request, and to request when Rupert does 
not commit 

Let us assume that in this game, the only thing about which both players really 
care, is to get an acceptable outcome. 

The game matrix is then:   

 
 

 c1 = R ∧C c2=R ∧¬C C3 =¬R ∧C c4 =¬R ∧¬C 
r1 = R ∧C (1,1) (0,1) (1,0) (1,0) 
r2 = R ∧¬C (1,0) (1,0) (1,0) (1,0) 
r3 = ¬R ∧C (0,1) (0,1) (1,0) (1,0) 
r4 =¬R ∧¬C (1,0) (1,0) (1,0) (1,0) 

 

Let us first consider the matrix here above as the matrix of a standard game. It can 
be easily seen that there are 9 Nash equilibria  in the game, i.e. (r1,c1)  plus the 8 stra-
tegic pairs corresponding to the selection by Rupert of either r2, or r4 

Now let’s turn to the game of deterrence. Strategies r2 and  r4 are safe, implying 
that c1, c2, c3,, and c4 are not positively playable. 

It follows that all four strategies of Charlene are playable by default, and conse-
quently that c1 is deterrent vis-à-vis r3, and r2 is deterrent vis-à-vis r1 and r3. 

On the whole, the game of deterrence has one solution: 

{J(r1) = 0; J(r2) = 1; J(r3) = 0; J(r4) = 1; J(c1) = 0; J(c2) = 0; J(c3) = 0; J(c4) = 0}, 
leading to 8 of the 9 equilibria found in the standard game.  

This result derives straightforwardly from the fact that the game is of type E. 
Moreover, we see that treating the binary game as a game of deterrence leads to a 

reduction of the size of the equilibria set. This is just an example of a more general 
result according to which every positively playable equilibrium of a game of deter-
rence is a Nash equilibrium in the corresponding standard game, while the reverse is 
not true. 

3.3   Dynamic Games of Deterrence 

As environment evolves, so do deterrence systems. Since deterrence places a stress on 
acceptability thresholds, it seems not unreasonable to assume that changes in deter-
rence systems are discontinuous.  

Hence, the dynamics of a deterrence system can be modeled through a multi-stage 
game, such that at each stage, the players play a static game of deterrence called a 
play. The decisions in a play are called controls. The pair comprised of a stage and a 

   Rupert 
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play defines a state of the game. Evolution of the state over time defines a trajectory. 
The game target is a subspace of the states space, such that when it is reached, the 
game is over. 

A strategy is a function that associates a control with each state of the game.  

With respect to outcomes, two particular cases will be considered, which - by anal-
ogy with the terminology in differential games - we shall call games with terminal 
outcomes (GTO's), and games with integral outcomes (GIO's). In GTO's, only out-
comes at the target will be taken into account, while in GIO's, a player's outcome in 
the game will be defined by the product of the outcomes associated with each play of 
the trajectory followed.  

Strategic sets being much larger than control sets, determination of strategies play-
ability properties in a multi-stage game of deterrence, can be can be made easier by 
establishing a connection between these properties and those of controls. 

Thus, it is shown [8] that : given a GTO, a strategic pair s, ∏(x1,s) a trajectory gen-

erated by s from initial state x1, xf the terminal point of ∏(x1,s), si ∈ s, and ui
f = 

si(xf), then the playability properties of si and ui
f  are identical.  

Controls playability properties can also be considered not within the plays where 
these controls are implemented, but in the GTO. It will then be assumed as here 
above, that playability by default occurs in the absence of positive playability, and 
playability occurs either through positive playability or through playability by default.  

If xk ∈ ∏(x1,s), we shall say that ui
k is a safe (resp. positively playable) control of 

player i in the GTO,  if ∃si ∈ Si such that si
k(xk) = ui

k and si is safe (resp. positively 

playable). 

It can then be shown (ibid) that : if si is safe (resp. positively playable, or playable 

by default), then ui
k = si(xk) is safe, (resp. positively playable or playable by default) 

in the GTO. 

Similarly, it is shown (ibid) that in a GIO,  given a strategic pair s,  ∏(x1,s) a tra-

jectory generated by s from initial state x1, and  si ∈ s : 

1) si is safe (resp. positively playable) iff  ∀ xk ∈ ∏(x1,s), the control ui
k = si(xk) 

is safe (resp. positively playable);  

2) si is playable by default iff ∃ xk ∈ ∏(x1,s) such that ui
k = si(xk) is playable by 

default. 

4   Example 2 

4.1   General Statement and Standard Game  

Let us assume that Charlene holds a large amount of information which might be of 
some interest for other agents of the company. On the one hand, Charlene does not  
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Charlene 

want to be bothered, since she considers that giving Rupert what he wants, might push 
Rose, an other colleague, to also ask information.  On the other hand, turning a re-
quest down, means entering in a conflict with possibly negative consequences. 

On their side, Rupert and Rose want to get information, but neither wants a conflict 
with Charlene.  

So, the interaction process is clearly a two stage-one. Charlene plays with Rupert 
in the first stage, and with Rose in the second one. 

Let us assume that the interaction between Charlene and Rupert is represented by 
the following matrix game : 

 
 

 C 
 

C 

R ((1,1) ((-1,-1) 
R ((0,2) ((0,2) 

 
where as usual: 

C stands for commits (in the present case, gives information if requested) 
C : doesn’t commit 
R : requests (in the present case, asks for information) 
R : doesn’t request 
 
This game is nothing more than the classical Entry Deterrence problem, with 

two Nash equilibria (R,C) and (R,C), the latter being the only  sub-game perfect 
equilibrium. 

4.2   Game of Deterrence 

256 different games of deterrence can theoretically be derived from the above matrix, 
depending on the players thresholds. But this number can be dramatically reduced 
through some reasonable assumptions on the outcomes of the standard game :  

1) if an outcome of the standard game is considered acceptable by a player, then 
any  superior one should also be considered acceptable; 

2) if an outcome of the standard game is considered unacceptable by a player, then 
any inferior outcome should also be considered unacceptable; 

3) According to the outcomes in the standard game, the players preferences over 
the set of strategic pairs in the game of deterrence should satisfy the following  
relations : 

- for  Rupert : (R,C) ≥ (R,C) = (R,C) ≥ (R,C); 
- for Charlene : (R,C) = (R,C) ≥ (R,C) ≥ (R,C); 

where "=" and "≥" indicate the indifference and preference relations  respectively. 
One can easily derive from the above set of conditions that only the 16 following 

cases remain 

 

   Rupert
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      C       C               C       C              C       C             C       C 
R (1,1)  (1,1)       R (1,1)  (1,0)     R (1,0)  (1,0)    R (1,0)  (1,0) 
R (1,1)  (1,1)       R (1,1)  (1,1)     R (1,1)  (1,1)    R (1,0)  (1,0) 
    case 1                  case 2                 case 3               case 4 
 
      C        C               C       C            C       C              C       C 
R (1,1)   (0,1)      R (1,1)  (0,0)    R (1,0)  (0,0)      R (1,0)  (0,0)        
 
R (1,1)   (1,1)       R (1,1)  (1,1)    R (1,1)  (1,1)      R (1,0)  (1,0) 
        case 5                  case 6                case 7                 case 8 
 
      C        C               C       C            C       C              C        C 
R (0,1)   (0,1)      R (0,1)  (0,0)    R (0,0)  (0,0)      R (0,0)  (0,0)        
 
R (1,1)   (1,1)       R (1,1)  (1,1)    R (1,1)  (1,1)      R (1,0)  (1,0) 
     case 9                case 10              case 11               case 12 
 
      C        C               C       C             C       C              C       C 
R (0,1)   (0,1)      R (0,1)  (0,0)    R (0,0)  (0,0)      R (0,0)  (0,0)        
 
R (0,1)   (0,1)       R (0,1)  (0,1)    R (0,1)  (0,1)      R (0,0)  (0,0) 
    case 13               case 14              case 15              case 16 
 
Let us call conflict a situation where an request from Rupert is turned down by 

Charlene 
If we want to introduce dynamics in the problem, assumptions must be made about 

the transition rules from one stage to the next.  
Let us consider that at each stage the matrix depends on the outcomes of the previ-

ous plays. For instance, it seems reasonable to consider that Charlene will lose more 
at each conflict (her reputation as a collaborative person might deteriorate), and that if 
in the beginning the losses may be painless, a protracted series of conflicts will even-
tually lead to an unacceptable outcome for her.  

For the sake of simplicity, we shall assume that: 

- one conflict is all what Charlene can stand 
- the first play is modeled by case 5 here above 
- the second play is modeled by case 6 if there is a conflict in the first play, and by 

case 5 if not. 

Charlene faces a dilemma : if in the one shot game corresponding to case 5, C is 
safe and deters Rupert to request, this is not true when case 5 is considered to be the 
first play in a two stage game. Indeed, if a request from Rupert is turned down by 
Charlene, there is conflict, and hence the second play  being modeled by case 6, will 
be characterized by two possible and quite opposite solutions (in terms of playability).   

So Rupert might anticipate that Charlene will consider it hazardous to start a con-
flict in the first stage. He may then deduce that, since Charlene wants to get an ac-
ceptable outcome in the second play, she will avoid a conflict in the first one. Then 
Rupert will request, and Charlene will give him the information requested. But this is 
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not sure, since precisely, the result being undetermined in the second play, one cannot 
exclude that Charlene deters Rose to request in the second play.  

Furthermore, were it is not so, Rose may still choose not to request, which guaran-
tees her an acceptable outcome. On the whole, although the game resembles Selten’s 
Chain Store Paradox, there are here solutions for which deterrence works. 

5   Congestion Control Analysis 

We shall here recall [10] how games of deterrence can model task flow networks, and 
provide a congestion control. We shall then apply the results already obtained to fur-
ther analyze how the game type impacts on the risk of congestion in the dynamic 
workflow problem. 

5.1   State Representation  

At a given time t, each agent may send a request and/or a commitment throughout the 
conversational network. Hence, for any pair of agents (i j), there are 4 possible states 
of i with respect to j . Moreover, requests may be originated either by agents inside or 
outside the network.  

We can then associate with every ordered pair of agents (i,j), a dibit (Aij(t),Bij(t)), 
where Aij(t) and Bij(t) validate (value 1) or inhibit (value 0) requests  from i to j, and 
commitments  by j to a request sent by i, respectively. Thus at each tick of the clock, 
the state of the agents network can be represented by a square binary matrix. 

This state matrix can be considered as the matrix of a game of deterrence with two 
abstract players, the request function (R) and the commitment function (C) and agent 
sets as strategic sets. Each row i (resp. each column j) represents a strategy ri of R, 

(resp. strategy cj of C) corresponding to emission of a request by agent i (resp. emis-

sion of a commitment by agent j). (Aij(t),Bij(t)) is the outcome vector associated with 

the selection of strategic pair (ri,cj) at time t. 

A strategy ri is: 

- safe, if requests from i toward all other agents are validated; 
- dangerous, if there is at least one agent j toward which request is not validated. 
 
We define similarly safe and dangerous commitment strategies cj. 

Concepts of positive playability, playability by default, playability, and deterrence 
are then directly applicable. Assume for instance that request ri is deterrent vis-à-vis 

commitment cj.  

The usual conditions can be interpreted here as follows: 

1) agent i can emit  a request; 
2) agent j cannot commit to a request sent by agent i; 
3) there is another agent j' who can commit to the request sent by agent i. 

The game can be replayed at each tick of the clock. So network control can be done 
through a multi-stage game. 
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5.2   Congestion and Congestion Control 

In the sequel, we shall look for satisficing conditions for organizational efficiency. 
These conditions can be expressed under the form of a minimal value of task flow, 
that is under the form of a threshold condition. 

Now it is well known in communication networks, that when the input traffic in-
creases beyond a threshold, the information flow across the network slows down, 
eventually leading to congestion, that is, to a steady state of the network, such that no 
piece of information can be transmitted across the network.  

The usual method for preventing congestion is based on a limitation of the volume 
of data allowed to enter the network. In order not to let the information flow drop too 
much, congestion control can be triggered at a threshold level still far from conges-
tion. In other words, the level for which congestion control is triggered, may be pa-
rameterized. 

In the multi-agent task flow problem, congestion can be defined as a sequence of 
two consecutive identical states such that no agent is able to request or to commit, 
which implies that at least one of the two players should have no positively playable 
strategy  

Congestion control is based on the following algorithm: 
 

if  the game has positively playable equilibria, one of them is selected and applica-
tion of transition rules leads to the next state matrix 

if  there is no positively playable equilibrium, an equilibrium is selected while the 
network entries are closed, and application of transition rules leads to the next state 
matrix. 

 

It has been shown that applying this algorithm ensures prevention of congestion.  
The state of congestion can be declared straightforwardly from the resolution of the 

game. But, as already discussed, a game of deterrence might have several solutions, 
for instance, one where one player has some positively playable strategy, and another 
where its strategies are playable by default. Should we then rely on the first solution 
and consider there is no congestion, or should we consider the second solution and 
“declare” the state of congestion ? 

Therefore, to solve he congestion problem, we have to refine the conditions con-
cerning matrix configurations associated with communication network hypothesis, 
and the type of solutions multiplicity.  

5.3   Congestion Avoidance and Graphs of Deterrence 

As already mentioned, depending on the graph of deterrence, 7 types of games can be 
distinguished: type R, type C, type β, type R-C, type R-β, type C-β, type R-C-β. 

 

It has been shown [11] that:  

(i) there is no congestion for types C,R-C,C-β, R-C-β. 
(ii) types β and type R-β can lead to congestion in some cases. 
(iii) in type R  congestion is always possible. 
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In order to roughly assess the frequency of occurrence of a particular game type 
among the seven possible ones, let us first consider a completely flat organization, 
where we furthermore assume that given any pair (i,j) of agents, i and j may interact 
as they wish. 

The figure hereunder gives the probability of occurrence of a β-type game, and of a 
C-type game, as functions of the number of agents. It shows that the probability of  a  
β-type game increases and converges very quickly toward  1, while the probability of 
a C-type game decreases and converges very quickly toward 0 . Roughly, occurrence 
of a β-type game is almost sure for organizations comprised of more than 10 agents.  

So, congestion avoidance cannot be guaranteed in a completely autonomous agent 
organization as soon as the latter is comprised of more than 10 agents. In other words, 
small is beautiful! 
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For large organizations, global self-control cannot be achieved satisfactorily. 
One can slice these large organizations into smaller ones – we shall call them 

regional, such that inside each one of these, cooperation works nicely (i.e. the 
probability of congestion is low). Regional organizations can then be considered as 
super-agents interacting inside either the global organization itself, if the number of 
the former is well below 10, or inside some intermediate level organizations, if not. 
The intermediate organizations can in turn be considered as super-agents inside a 
higher level organization and so on, till the global organization level is reached. This 
approach, which for example, is intensively used in the car making industry, is 
nothing more than a multi-level organization design scheme, suited to provide 
“smooth” operation from the workflow point of view. 

Management intervention occurs only during the organization design stage. 
Another possibility consists in keeping the organization as it is (i.e. not slicing it) 

and using the congestion control algorithm when needed. Here, management interven-
tion does not occur only during the design stage but as soon as the risk of congestion 
is present. 
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The curves here above show that the intervention frequency might be high as soon 
as the number of agents is over 10. 

Now, the “slicing” technique amounts to nothing more than forbidding an agent to 
send a request to all other agents or to commit to the requests of all other agents. It 
follows that in the corresponding state matrix, safe strategies will never show, and 
therefore games of type R, C, R-C, R, R-β, C-β, and R-C-β.will never show. So we 
come back to the β-type game case.  

As already pointed, in such a game congestion might occur, but it is not inescap-
able. Here different sub cases can be considered,  depending on whether the graph is 
comprised of: 

- simple loops or circuits 
- general graphs with circuits. 

In the first case, it is easy to see that there is only one solution for which all strate-
gies are playable by default, and hence congestion occurs. 

The second case is more tricky, as we can have circuits inside circuits which in-
duce multiple solutions and here we must define the "right transition". It is then nec-
essary to analyze exhaustively all possible graph structures. 

6   Example 3 

Let us consider a two agent team, in which we shall assume for the sake of simplicity 
that tasks take only one time unit to be accomplished. 

Let us assume moreover that transitions are only governed by the two following 
rules which state that an agent is not allowed to:  

- send two consecutive requests to the same agent (be it himself) 
- commit consecutively twice to the request of the same agent (be it himself) 

Since, unlike example 2, the game of deterrence is not derived from a standard 
game, we consider all 256 matrices are possible 

Moreover, let us assume that the game starts at time t0, with play P0 characterized 
by the following matrix: 

                                    C 
 

 c1 c2 

r1 (1,1) (1,0) 
r2 (0,1) (1,0) 

 
The game exhibits one positively playable equilibrium (r1,c1) (the game type is R-

C). Hence here there is non congestion 
At the next stage, the game matrix is (play P1):  
                                     C 
 

 c1 c2 

r1 (0,0) (1,0) 
r2 (0,1) (1,0) 

   R 

   R 
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It can be easily shown that the game is a β-type one, with all strategies being play-
able by default.  

This means in turn that the congestion control algorithm has to be triggered. Since 
(r1,c1) has been the last strategic pair selected, transition rules forbid it to be selected 
at this stage. Consequently, the game exhibits three feasible equilibria: (r1,c2), (r2,c1) 
and (r2,c2). 

Let us first consider the play P2 obtained by selection of strategic pair (r1,c2): 
 
                                     C 
 

 c1 c2 

r1 (1,1) (1,0) 
r2 (0,0) (1,0) 

 
It be can be shown that the game has two solutions: 

- {J(r1) = 1 ; J(r2) = 0 ; J(c1) = 0 ; J(c2) = 0} 
- {J(r1) = 1 ; J(r2) = 0 ; J(c1) = 1 ; J(c2) = 0} 

In the first solution player C’s strategies are playable by default, while in the sec-
ond solution, c1 is positively playable. We know that then strategic pair (r1,c1) may be 
selected in which case no congestion needs to be declared. 

The transition rules then take the game back to play P1. 
Let us next consider the play P3 obtained by selection of strategic pair (r1,c2). The 

game matrix is: 
 

          C 
 

 c1 c2 

r1 (1,1) (0,0) 
r2 (0,1) (1,0) 

 
It be can be shown that the game has two solutions: 

- {J(r1) = 0 ; J(r2) = 0 ; J(c1) = 1 ; J(c2) = 0} 
- {J(r1) = 1 ; J(r2) = 0 ; J(c1) = 1 ; J(c2) = 0} 

As in the previous case, strategic pair (r1,c1) may be selected without declaring 
congestion, and the game is back to play P1 

Last, let us consider the play P4 obtained from play P1 by selection of strategic pair 
(r2,c2) : 

          C 
 

 c1 c2 

r1 (1,1) (1,0) 
r2 (0,1) (0,0) 

 
 

   R 

R 

   R 
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The game has only one solution:  
{J(r1) = 1 ; J(r2) = 0 ; J(c1) = 1 ; J(c2) = 0}, 
which means that once again strategic pair (r1,c1) is selected, with transition rules 

taking the game back to play P1. 
It follows that whatever the duration of the game, the only plays that can be en-

countered are P0, P1,P2,P3 and P4, with implications and game trajectories as given by 
the figures hereunder: 

P0 P1

P4

P2

P3

Plays interactions  

1 2 3 4 5 6
t

P0 P1

P4

P3

P2

P1P1

P2
P2

P3P3

P4P4

Gam e trajectories  

On the whole, since play P1 is the only play associated with the state of congestion, 
whatever the transition selected when the game is at play P1, there will be no conges-
tion at the next stage of the game, while on the opposite, whatever the play at an even 
stage, congestion should be declared at the next stage. 
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Abstract. Autonomous and Autonomic Systems (AAS) are essentially 
concerned with creating self-directed and self-managing systems based on 
biologically-inspired metaphors such as the mammalian autonomic nervous 
system.  Future Ubiquitous and Pervasive computing environments will depend 
on such a self-managing infrastructure. Agent technologies have been identified 
as a key enabler for engineering autonomy and autonomicity in systems, both in 
terms of retrofitting self-management into legacy systems and designing and 
developing totally new systems. Handing over responsibility to the systems 
themselves raises many concerns for humans. This paper reports on the 
continued investigation into a strand of research on how to engineer self-
protection mechanisms into systems to assist in providing confidence regarding 
the appropriateness of systems utilizing principles of autonomy and 
autonomicity. This includes utilizing the apoptosis metaphor to potentially 
provide a self-destruct signal between autonomic agents as and when needed, 
and an ALice signal to facilitate self-identification and self-certification 
between anonymous autonomous agents and systems. 

1   Introduction 

The driving force behind future paradigms of computing is the increasing 
convergence between the following technologies: (1) proliferation of devices; (2) 
wireless networking; and (3) mobile software [1]. 

Weiser first described what has become know as Ubiquitous Computing [2] as the 
move away from the “dramatic” machine (where the focus of hardware and software 
was on being so exciting that we, as users, would not want to be without it) towards 
making the machine “invisible” (being so embedded in our lives that it is used 
without thinking of it, nor recognizing it as computing per se).  Behind Ubiquitous 
Computing and related terms and research areas, lie three key properties of computing 
[1]: being (1) nomadic; (2) embedded; and (3) invisible. 
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In effect, this may lead to the creation of a single system with (potentially) trillions 
of networked information devices.  All of these next generation paradigms, in one 
form or another, will require an autonomic–self-managing–infrastructure to enable the 
successful achievement of this envisaged level of invisibility and mobility. 

Pervasive Computing is distinct from Ubiquitous Computing in that the computing 
devices are not invisible, but exist all around us.  Increasingly, users are accessing 
computing resources via personal devices.  Personal devices offer unique challenges 
for self-management due to their multi-equipment, multi-situation, and multi-user 
nature. Personal or Pervasive Autonomic Computing is much less about achieving 
optimum performance or exploiting redundancy (as in Autonomic Computing itself) 
and more about simplifying use of the equipment and the associated services 
[3],[4]. As such, it is particularly relevant to dealing with the move towards future 
nomadic, embedded and invisible computing [5],[6],[7].  

2   Biologically-Inspired Computing Self-managing Concepts 

An Autonomic System aims to achieve self-management through self properties  
such as self-configuration, self-healing, self-optimization, self-protection via self-
awareness, self-situation, self-monitoring and self-adjusting (for more information, 
see [8]).  

The autonomic environment requires that autonomic elements and, in particular, 
autonomic managers communicate with one another concerning self-* activities, in 
order to ensure the robustness of the environment.  Fig. 1 depicts that the autonomic 
manager communications (AM�AM) also includes a reflex signal.  This may be 
facilitated through the additional concept of a pulse monitor—PBM (an extension of 
the embedded system’s HBM, or heart-beat monitor, which safeguards vital processes 
 

 

Fig. 1. Autonomic and Autonomous Computing Environment (AACE) 



372 R. Sterritt and M. Hinchey 

through the emission of a regular “I am alive” signal to another process) with the 
capability to encode health and urgency signals as a pulse [9].  Together with the 
standard event messages on the autonomic communications channel, this provides 
dynamics within autonomic responses and multiple loops of control, such as reflex 
reactions among the autonomic managers [10]. 

2.1   Autonomic Reflex Signal – Lub-Dub Pulse Emission 

This reflex component may be used to safe-guard the autonomic element by 
communicating its health to another AE [6].  The component may also be utilized to 
communicate environmental health information [3, 7].  For instance, in the situation 
where each PC in a LAN is equipped with an autonomic manager, rather than each of 
the individual PCs monitoring the same environment, a few PCs (likely the least busy 
machines) may take on this role and alert the others through a change in pulse to 
indicate changing circumstances. 

An important aspect concerning the reflex reaction and the pulse monitor is the 
minimization of data sent—essentially only a “signal” is transmitted.  Strictly 
speaking, this is not mandatory; more information may be sent, bandwidth permitting, 
yet the additional information must not compromise the reflex reaction.   For instance, 
in the absence of bandwidth concerns, information that can be acted upon quickly and 
not incur processing delays could be sent.  The important aspect is that the 
information must be in a form that can be acted upon immediately and not involve 
processing delays (such as is the case of event correlation). 

Just as the beat of the heart has a double beat (“lub-dub”, as it is referred to by 
physicians) the autonomic element’s pulse monitor (Fig. 2) may have a double beat 
encoded—as described above, a self health/urgency measure and an environment 
 

 

Fig. 2. AACE incorporating the Lub-Dub Pulse Emission and Monitoring 
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health/urgency measure.  These match directly with the two control loops within the 
AE, and the self-awareness and environment awareness properties. 

2.2   The ALice Signal 

An aspect to this research is that Anonymous Autonomous/Autonomic Agents (and 
indeed signals and communications—event messages, etc.) need to work within the 
Autonomic System to facilitate self-management.  As such, the agents and their hosts 
need to be able to identify each other’s credentials through such means as an ALice 
(Autonomic License) signal (Fig. 3).  This would allow a set of communications to 
ensure that the visiting mobile agent (or signal/communications) has valid and 
justified reasons for being there, as well as providing security mechanisms for the 
visiting agent during interaction with other agents and host.   An unsatisfactory ALice 
exchange may lead to self-destruction of that agent as a means of self-protection for 
the system. 

 

Fig. 3. AACE incorporating the ALice Signal 

3   Pervasive Exemplar: Smoke Alarms  

Smoke Alarms offer a simple pervasive system example that can take advantage of 
some of the Autonomic Concepts described above in innovative ways.  Although 
Autonomicity is specifically motivated for addressing complex systems, the point to 
remember is that we are moving into an era with the potential of having trillions of 
pervasive devices.  
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Fig. 4. Making Homes “Smarter”: Autonomic Smoke Alarms 

3.1   A “Smart” Smoke Alarm 

Many jurisdictions now require the use of smoke alarms in private homes (and in 
places of business). Many people use individual alarms, ideally one per level in the 
building, and which are powered by batteries. It is generally recommended that 
batteries are replaced on a regular basis, perhaps every year or every two years, 
depending on the alarm itself and its rate of power consumption.      

In newer construction, hard-wired smoke alarms are available, powered by an 
electricity source, with batteries only used for backup in the event of a loss of 
power.  These hard-wired alarms also have the advantage that when smoke is detected 
by one alarm, all of the alarms in the building will sound, whereas with the individual 
alarms, only the alarm that has sensed smoke will be activated.    

We know of only one commercially-available smoke alarm system where battery-
operated smoke alarms will all activate when one of the alarms senses smoke.  The 
use of principles from autonomic computing, and the biologically-inspired 
mechanisms described earlier, allow us to develop this further and provide a more 
innovative, practical, and efficient smoke alarm system, achieving the advantages of a 
hard-wired system, but the flexibility of a wireless system. 

Consider a two-storey house, with a single (unwired) standard smoke alarm on 
each level. If there is a fire on the lower level, which smoke alarm will sound first will 
depend on the location of the fire and on the positioning of the alarms. Suppose that 
the lower level alarm is not working correctly due to a low battery; then, the upper 
level alarm will only sound when smoke is detected at that level, losing valuable time 
and most probably endangering lives since smoke kills.     

Most smoke detectors will sound intermittently to indicate that the battery is low, 
but if the alarm is located in an out-of-the-way location, or somewhere where the 
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emissions are not going to be heard, the low-battery situation may not be 
detected.  Hard-wired alarm systems have an advantage here in that when one alarm 
has a low battery, all of the other alarms linked to it may also sound.    

Let us now consider a wireless autonomic smoke alarm system (as depicted in 
Figure 4).  Each smoke alarm emits a “lub-dub” signal, using the dual beat to indicate 
firstly that the alarm is functioning correctly (its heartbeat) and secondly its current 
“health” (functioning correctly, battery level, whether smoke has been detected, 
etc.).  (Note the frequency of the lub-dub is very low, when everything is operating as 
normal,  compared to the standard autonomic element as described elsewhere, so as to 
minimize battery usage.) 

When smoke is detected by a single smoke alarm in the system, this information is 
propagated to all of the alarms in the system, and all of the alarms in the building can 
be sounded almost immediately, although only one of them has actually detected 
smoke. 

Should one of the alarms in the system fail (because of a low battery, or for other 
reasons), the rest of the system will not be affected (as a hard-wired system may 
be).This is because the rest of the system is not dependent on the non-functioning 
alarm, which may be ignored because it will be put into self-destruct mode (or self-
quiescence mode, which is a less extreme form of self-destruction, which can be 
reversed [11]) as a result of an unsatisfactory ALice signal exchange, indicating to the 
rest of the system that that particular device is not functioning correctly. 

Thus, using autonomic properties and biological-inspiration based on the 
techniques we described earlier, we can create a wireless smoke alarm system that 
offers both the advantages of a wireless system (no wiring required, solely powered 
by batteries, easy to install in existing construction) and also the advantages of  a 
hard-wired system (one alarm detecting smoke can result in all of the alarms 
sounding, or one alarm having a low battery can be signalled on all of the alarms in 
the system). It also overcomes one major failing of many hard-wired systems, namely 
that an entire system can fail due to the failure of a single alarm.     

The approach described here, based on autonomic computing principles, offers the 
same advantages of both the wireless and wired alarms, but without the 
disadvantages.  It also offers greater robustness in the case of failure by virtue of self-
management, and offers the potential to extensively expand the functionality of 
smoke alarms, for instance together with an appropriate computer-based smart home 
system, provide adaptive and dynamic fire exit routes through lighted direction 
signals to indicate the best escape route taking into consideration place of fire, 
crowds, blocked fire exits, etc.  New solutions such as these are increasingly being 
considered critical due to perceived threat of terrorist attacks.  Any such pervasive 
sensor and effector system will require autonomicity and autonomy-based techniques. 

3.2   Implementing the Autonomic Smoke Alarm 

This technology exploits our “lub-dub” technology, as first described in [12], using the 
lub-dub “double heart-beat” to carry “health” information.  In this case that information 
is that all smoke detectors in a building are operating correctly (i.e., if one smoke 
detector were faulty, or were to lose power, such as battery failure, etc., this would be 
detected by the failure to receive a heartbeat within a specified period of time), and the 
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second beat  (the “dub”) would carry operational data (that is, if an alarm signal 
needed to be sounded by one device, the second beat would be used to convey this 
information to the other smoke detectors in the building so that they too would switch 
to alarm mode). 

While we see the smoke alarm system as a particularly useful application of the 
lub-dub technology, there are many more possible uses: burglar alarm systems, 
sprinkler systems, satellites, and, in fact, any so-called “sensor network”, where a 
number of simple sensors are used together in a way that collects information 
regarding the status of various devices. In all of these applications, the first beat of the 
lub-dub could be used to carry health information (i.e., that the device is functioning 
correctly and forwarding data readings in a timely fashion) and the second to carry 
instructions or signals, either trigged by a particular event (e.g., detection of smoke) 
or to perform various operational functions. 

This smoke detector is unique in that it links devices within a building together 
wirelessly, offering functionality that would normally only be available in a 
hardwired system. More importantly, it provides a mechanism to determine if there 
are faulty devices rather than discovering this by failure of the device when most 
needed. The approach allows for all devices to signal an alarm rather than just the 
device that detects the smoke, and also to send a signal that is recognizable 
throughout the building if one of the devices fails (rather than with current devices 
where a low battery causes a signal, such as beeping, only at the failing device, all 
devices could signal the problem). 

Again, this is a particular instantiation of the approach. It has applications in a 
large number of areas above and beyond a smoke detector. 

This is a particular instantiation of an idea to exploit our lub-dub technology.   
Lub-dub is significantly more general and can be used in many more application areas 
and in many more ways. However, this is a specific product that could be adapted to 
many uses both in NASA missions based on sensor networks (or which there are 
several with many forthcoming) and in everyday life. Anywhere monitoring is 
required, we believe this approach could be used. 

The Autonomic Smoke Detector is a particularly illustrative example that 
highlights the technique, but is also something that could likely be developed as a 
product. Current smoke detectors “beep” when their battery is low. This approach 
would allow for all detectors in the house/building to indicate such a problem, rather 
than just on the level that has the problem. Also, it allows for existing construction to 
have the advantage that the alarm will sound on each level rather than just on the level 
where the smoke has been detected (as can be achieved with hardwired systems built 
into new construction).   This could potentially save lives. 

4   Conclusions  

Autonomic and Autonomous Systems techniques provide a means to offer emerging 
pervasive, ubiquitous and ambient intelligence systems a means to self-manage. In 
this paper we have taken a simple example, that of smoke alarms, to illustrate the 
techniques that are emerging in self-managing complex computer-based systems and 
which may also be of use in the pervasive computing space.  
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Most jurisdictions require the installation of smoke detectors (and often sprinkler 
systems) in new housing. For most new houses, smoke detectors are hardwired and 
connected together so that if one is activated, all of the smoke detectors sound the 
alarm. For existing houses, installing such wiring is nontrivial. Moreover, a better 
mechanism would be to have smoke detectors within a house (or building) 
communicate with each other wirelessly, using the concept of a heartbeat to ensure 
that each device was working correctly (with appropriate action taken if not). In this 
way, failure of one detector could be identified, and when one detector were 
activated, the signal could be sent to all devices, using the second beat of our “lub-
dub” technology. 

Although, a simple smoke alarm system has been described here for purposes of 
illustration, clearly, many of these techniques will apply to similar systems such as 
burglar alarm and access-control systems, wireless sensor networks, and other 
systems based on sensors and actuators. 
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Abstract. Technological developments such as biometrics are providing new 
potential for next generation security systems.  At the same time these 
developments can make the system more complex to manage. Some classes of 
systems have a fundamental requirement to survive be that to ensure an 
organization does not loose tens of millions of dollars due to downtime or to 
ensure there is not a security breach. Autonomic self-managing systems are 
motivated to hide the ever increasing complexity in today’s systems but through 
their selfware approach they also offer the potential to create survivable 
systems.  This paper details one such approach, to create a survivable security 
system for correction centers. 

1   Introduction 

In 2001, IBM presented its view on the state of the IT industry [1]—a massive ever 
growing complexity and cost burden—resulting in the Autonomic Computing 
initiative and self-managing systems in general becoming mainstream to address the 
complexity problem, the total cost of ownership, as well as to provide the way 
forward to enable future pervasive and ubiquitous computation and communications 
[2][3][4].  The strategic holistic self-managing vision is dependant on many existing 
research domains not least autonomous computing and fault-tolerant computing 
(FTC). Carrying on this FTC aspect, self-management potentially can facilitate 
survivable, dependable and fault tolerant systems.  

To enable self-management (autonomicity) a system requires many self properties 
(self-* or selfware), such as self-awareness.  This paper first explores autonomy 
versus autonomicity and reflects upon some existing three tier architectures to 
establish design guidance. The paper then presents a deployed critical security system 
that requires built in survivability and autonomicity. This Core architecture for access 
control to a correction center secure location incorporates such identification 
technologies as biometrics.  The implication of these multiple components is that the 
system becomes more complex, a theme the Autonomic initiatives aim to address. In 
this situation the self-healing and self-protections aspects are more critical to the 
system.  The continuous monitoring of the system health through control loops 
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matches the architecture needs.  Research within the Autonomic field such as self-
healing can assist in creating a survivable environment [5-9]. 

2   Autonomicity and Autonomy 

In terms of computer-based systems design paradigms, autonomy implies ‘self-
governance’ and ‘self-direction’ whereas autonomic implies ‘self-management’.  That 
is, Autonomy (self-governance) is the delegation of responsibility to the system to 
meet the defined goals of the system (automation of responsibility including some 
decision making for the success of tasks) whereas Autonomicity is the self-
management of the system (automation of responsibility including some decision 
making for the successful operation of the system), and as such will often be in 
addition to self-governance to meets one’s own required goals.  It may be argued at 
the systems level that the success of autonomy requires successful autonomicity i.e. 
ultimately to ensure success in terms of the tasks requires that the system is reliable.  
For instance, the goals of a system (potentially implemented as mobile agents) may be 
to find the best price for a holiday from online travel bureaus, the system may have 
autonomy (self-governance/self-direction) to negotiate between certain price ranges, 
destinations and dates.  The goals to ensure the system is fault tolerant and continues 
to operate under fault conditions for instance, would not fall under this specific 
delegated task of the agents (their autonomy), yet ultimately the task may fail if the 
system can not cope with dynamic changes and conditions in the environment.  From 
this perspective, the autonomic and self-management initiatives may be considered 
specialized forms of autonomy, that is the autonomy (self-governance, self-direction) 
is specifically to manage the system (to heal, protect, configure, optimize and so on).  

Table 1. Dictionary definitions [10,11] 

au·to·nom·ic  (àwt  nómmik) 
adj.  

1. Physiology.  
a. Of, relating to, or controlled by the autonomic nervous system.  
b. Occurring involuntarily; automatic: an autonomic reflex.  

2. Resulting from internal stimuli; spontaneous.  
 
au·ton·o·mic·i·ty  (àwt  nóm i síttee) 

n.  
1. The state of being autonomic.  

 
au·ton·o·mous  (aw tónn m s) 

adj.  
1. Not controlled by others or by outside forces; independent: an autonomous judiciary; an 

autonomous division of a corporate conglomerate.  
2. Independent in mind or judgment; self-directed.  
3.  

a. Independent of the laws of another state or government; self-governing.  
b. Of or relating to a self-governing entity: an autonomous legislature.  
c. Self-governing with respect to local or internal affairs: an autonomous region of a country.  

4. Autonomic.  
[From Greek autonomos : auto-, auto- + nomos, law] 
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Taking the dictionary definitions of autonomous and autonomic [10,11], 
autonomous essentially means ‘self-governing’ (or ‘self-regulating’, ‘self-directed’) 
as defined.  ‘Autonomic’ is derived from the noun ‘autonomy’, and one definition of 
autonomous is autonomic, yet the main difference in terms of dictionary definitions 
would be in terms of speed; autonomic being classed as ‘involuntarily’, ‘reflex’ and 
‘spontaneous’. 

When one considers the tiers for Intelligent Machine Design [12-15] it consists of 
top level being reflection, middle level routine and bottom level reaction.  Reaction is 
the lowest level where no learning occurs but immediate response to state information 
coming from sensory systems.  Routine is the middle level where largely routine 
evaluation and planning behaviors take place. It receives input from sensors as well as 
from the reaction level and reflection level. Reflection, a meta-process where the 
mind deliberates about itself, top level receives no sensory input or has no motor 
output, it receives input from below.  The levels mark a degree of speed, for 
instances; reaction should be (as close to) immediate; whereas reflection is 
consideration over time. 

Table 2. Similarity between three tier architectures form various research domains 

Intelligent 
Machine 
Design 

Future 
Comms 
Paradigms 

DARPA/ISO 
Autonomic 
Information 
Assurance 
(AIA) 

NASA’s 
Science 
Missions 

Self-Directing & 
Self-Managing 
Systems 
Potential 
General 
Architecture 

Reflection Knowledge 
Plane 

Mission Plane 
 

Science Autonomous 
 

Routine Management 
/ Control 
Plane 

Cyber Plane Mission Selfware 
 

Reaction Data Plane Hardware 
Plane 

Cmd 
Sequence 

Autonomic 
 

Other variations of this three tier architecture have been derived in other research 
domains (summarized in Table 2):  

In the future communications paradigms research domain a new construct, a 
knowledge plane, has been identified as necessary to act as a pervasive system 
element within the network to build and maintain high level models of the network. 
These indicate what the network is supposed to do to provide communication services 
and advice to other elements in the network [16].  It will also work in coordination 
with the management plane and data planes.  This addition of a knowledge plane to 
the existing data & management/control places would form a three tier architecture: 
data—management/control—knowledge [16]. 
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In the late 1990s DARPA/ISO’s Autonomic Information Assurance (AIA) program 
studied defense mechanisms for information systems against malicious adversaries. 
The program specified an architecture consisting of three plans: mission, cyber and 
hardware with one finding from the research being that fast responses are necessary to 
counter advance cyber-adversaries [17].  

NASA’s science mission management, from a high level perspective, may be 
classified into Science Planning: setting the science priorities and goals for the 
mission; Mission Planning: involving the conversion of science objectives to 
instruments and craft maneuvering, house keeping and scheduling, comms link etc; to 
Sequence Planning: production of detailed command sequence plans.  Overall the 
transformation from high level goals to implementation on the hardware [18]. 

These versions of a high level three tier view of self-governing and self-managing 
systems may be generalized into autonomous—self-ware—autonomic tiers.  Of 
course this is not intended to be prescriptive nor conflict with other views of 
autonomic systems etc, the intention to examine and view systems in this light is to 
assist in developing effective systems. 

‘Autonomic’ became mainstream within Computing in 2001 when IBM launched 
their perspective on the state of information technology [1].  Autonomic Computing 
has four key self properties: self-configuring, self-healing, self-optimizing and self-
protecting [19].   In the few years since, the self-x list has grown as research expands, 
bringing about the general term selfware or self-*, yet these four initial self-managing 
properties along with the four enabling properties; self-aware (of internal capabilities 
and state of the managed component), self-situated (environment and context 
awareness), self-monitor and self-adjust (through sensors, effectors and control 
loops), cover the general goal of self management [20]. 

3   The Core Architecture 

Locations, campuses and sites that require high security access, such as research labs 
and law enforcement correction centers, are increasingly seeking to utilize the 
emerging technology in biometrics such as iris and finger print technologies to allow 
and restrict access and movement around their locations.  Secure locations have 
additional architectural requirements to the norm for dependable systems, such as the 
architecture should be secure, fault-tolerant, and non-exploitable [17]. That is, the 
system must meet the security policies of the organization and it must accommodate 
different security infrastructures; the system must remain robust and secure when 
faults occur, both random faults caused by the failure of system elements and to 
malicious faults caused by a deliberate attack on the system; that communication must 
be reliable so that defensive components remain fully functional even in the face of an 
attack on the infrastructure; and that it must not be possible for an attacker to exploit 
defensive components to effect an undesirable action, for example, an attacker or 
random fault must not be able to trigger a response that causes the system to 
unnecessarily deny legitimate users access and movement nor the opposite allow non-
legitimate users access and movement around the location [17].  

 
 



 Survivable Security Systems Through Autonomicity 383 

 

F
ig

. 1
. C

or
e 

Se
cu

ri
ty

 S
ys

te
m

 -
 H

ig
h 

L
ev

el
 A

rc
hi

te
ct

ur
e 



384 R. Sterritt et al. 

Figure 1 illustrates the Survivable Secure System (SSS) module architecture.  The 
following sub-sections briefly describe their roles. 

3.1   Users of the System 

There are three key user types in this system: inmates, officers and management.  To 
achieve inmate co-operation and buy-in to the security system they are also provide 
with benefits.  Through an inmate touch screen kiosk using biometrics to ensure 
confidential access to private information such as inmate record details. 

An Officer’s access to the system is through more conventional PC access to 
organize and administrate prisoner services for instance meal distribution, tuck shop 
orders and prisoner movements. 

Management access to the system can improve efficiency, enhance security, and 
provide tools for trend analysis.  One such benefit is the ability to provide direct 
information services to the prisoners and free up officers from the role of information 
providers. 

3.2   Identification Module 

The identification module represents the technology being used to identify people. 
The architecture supports the use of a range of biometric technologies, i.e, fingerprint, 
hand geometry, iris and facial recognition. A biometric Server is responsible for the 
management of the connected biometric readers and will have its own internal 
template database.  The Hand readers and Fingerprint sensors communicate with the 
biometric server through the Hand reader Server and Fingerprint server. Through the 
servers, the Biometric Server will obtain a list of all attached devices. 

3.3   Access Control Module 

Linked to the Identification module is the Access Control Module. The Access 
Control Module will enable remote management of all doors and gates.  Servers that 
interact with the Access Control module are briefly described below. 

3.3.1   Biometric Server 
The access control server (ACS) registers with the biometric server as the default 
application for all readers defined in the database. When a verification message is 
received it will decide if access should be granted to the individual requesting 
access. When the decision is positive an appropriate unlock message is sent to the 
door server. When the request is denied a message may be sent to the door server to 
light a red lamp to indicate to the user that they have been denied access. Decisions 
should be made using the current zone information, the allowed zones and any time 
element. 

3.3.2   Enrolment Console 
The ACS sends an alarm message to the console when a visitor, who has a vehicle 
attached to their pass, tries to enter the outside zone. 
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3.3.3   Control Console  
The ACS sends zone update messages to the control console giving the number of 
people/vehicles in each zone. These messages are sent every time a person or vehicle 
enters or exits a zone. When a control console starts up it registers with the ACS in 
the same way as it does with the door server. The control console also sends messages 
to the ACS whenever an operator manually relocates a person or vehicle. These 
messages are treated in the same way as in they will cause zone update messages to 
be sent out. The relocation messages can also relate to normal vehicle movement 
using the card swipes and the operator responding to the vehicle move. 

3.3.4   Card Reader Server  
When the ACS starts up it registers with the card reader servers that are defined in the 
database. When a card is swiped at a reader the card number is sent to the ACS. The 
ACS looks the card number up in the database and if the card is a vehicle card it will 
send a message to the appropriate PDA Console Server or control console. 

3.3.5   PDA Console Server 
The PDA Console displays information relating to vehicles wanting to gain access to 
zones. 

3.4   Committal Module 

The committal console will allow staff to add basic inmate details to the system along 
with the inmates photograph. Once the inmate has been added the operator can print a 
set of identification cards for the inmate. After committal, the operator can use the 
administration console to add additional more information can be added at the 
administration console where more cards can be printed if required. 

3.5   Tracking 

Rules will be related to tracking – (Diary) i.e. to keep track of Inmates, Staff, Visitors 
etc. Access Control will also relate to Tracking, as it defines where they are (zones) 
and what they can do (properties). 

3.6   Core Module 

The Core Module will contain the main ‘Events Processor’. This will hold the events 
produced from each module.  Also contained within the Core Module is the ‘Rules 
Processor’ which will define Who – (Visitors, Inmates) should be Where – (Cell, 
Visiting Room) and at what time. 

3.7   Cell Management 

This will allow for the definition of house blocks, wings and cells. It allows the 
allocation of inmates to cells and keeps records of each movement. A graphical map 
is used to display house blocks, wings and cells as well as occupation. 
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3.8   Info Centre 

Info Centre is a touch screen interface to provide general information (for all inmates) 
and personalised information (tailored for each inmate).  

� Personal Information e.g. Release Date, bullying etc.  
� General Information e.g. Rules and Regulations, Training etc. 
� Requests for products and services 

3.9   Officer Module 

Each House Officer will have an interface to the system, which will allow them to 
monitor the activities of Inmates they are in charge of. This will reduce the time 
involved in the administrative duties an Office must carry out for his wing, e.g. Tuck 
shop orders, Canteen ordering, education etc.  

3.10   MIS Module 

The Management Information System will provide information to Management in a 
Prison that will help them plan for the future. This can be achieved by identifying 
trends in the data e.g. fights, queues at specific location. 

It can also assist in making appropriate decisions about individual offenders. 
Access to the inmates’ criminal history will be available, length of stay expected. This 
module could also be used to track inmate populations.  

3.11   Scenes of Incidence 

Scenes of Incidence (SOI) is used to capture images.  SOI is related to Secure Image 
Processing System (SIPS). 

SIPS is used to store images on a secure central database. There are two main 
components, Prisoner identification and scenes of incidence.  

3.12   Watchdog 

Watchdog is a service that monitors a specific list of devices/programs and 
communicates this status to registered consoles. The service will also accept 
commands from consoles allowing the monitored devices to be restarted.  

The service maintains a list of monitored devices in the system SQL database and 
allows consoles to restart selected devices. 

This program is designed to work with any SNMP compatible device. The aim of 
the program is to monitor the status of specific ports on SNMP Netgear switches on 
the network. It will also receive traps from the switch. 

3.13   Systems Administration 

This covers the administration of several categories of people, vehicles, zones, Card 
Templates and reports on people. 
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4   Core Survivable Security System Planes Examples 

Table 3 depicts some of the Autonomicity / Selfware / Autonomy (self-directing and 
self-managing) plane activities within the Core Survivable Security System. 

Table 3. Self-Directing & Self-Managing Systems Architecture Planes for Core Systems 

Plane Core Survivable Security System  
Autonomous 
(over a time period) 

Pattern and trend analysis of inmate behaviour  

Selfware 
(day-2-day) 

Bio recognition and gate access 

Autonomic 
(reflex reaction) 

Lock down and server reboot from watchdog. 

It is key that a Self-* System operates with several speed loops of control – reflex 
operations, normal activity and a slower loop detecting patterns both reflective 
(monitoring its own self-* behaviour to ensure correct function) and user behaviour 
over time.  These are all required to ensure a survivable system from necessary instant 
reflex self-healing operations if a server hangs to long term identification of 
intermittent and incorrect self-* behaviour. 

5   Conclusion 

A key point being made in this paper is the need for dynamics within responses and 
multiple loops of control; some fast (and possibly imprecise but immediate to 
overcome component faults and avoid system failure) and some slow (due to 
consideration over time of behaviour, both system and users). 

These dynamics and multiple loops of control have been presented within three 
architectural planes: autonomic / selfware / autonomous.  A ‘reflex reaction’ in the 
autonomic layer is based on the need for a system to respond more quickly than it can 
respond after detailed analysis and planning of a comprehensive response – simply as 
that timeframe may be too late. 

The paper detailed a deployed Survivable Security System also referred to as 
Biometric Identification and Tracking System (BITS) used in law enforcement and 
correction centers. The system operates across these three planes, taking autonomic, 
automatic and autonomous actions to ensure failure does not occur at the system 
level.  As such, the survivable property of systems can be assisted by utilizing 
autonomic mechanisms [21]. 
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